
Package index
-
cond_indirect()cond_indirect_effects()indirect_effect()cond_effects()many_indirect_effects() - Conditional, Indirect, and Conditional Indirect Effects
-
all_indirect_paths()all_paths_to_df() - Enumerate All Indirect Effects in a Model
-
indirect_effects_from_list() - Coefficient Table of an 'indirect_list' Class Object
-
total_indirect_effect() - Total Indirect Effect Between Two Variables
-
q_mediation()q_simple_mediation()q_serial_mediation()q_parallel_mediation()print(<q_mediation>) - Mediation Models By Regression or SEM
-
plot(<q_mediation>)indirect_on_plot() - Plot Method for the Output of 'q_mediation' Family
-
index_of_mome()index_of_momome() - Index of Moderated Mediation and Index of Moderated Moderated Mediation
-
cond_indirect_diff() - Differences In Conditional Indirect Effects
-
plot(<cond_indirect_effects>) - Plot Conditional Effects
-
plot_effect_vs_w()fill_wlevels() - Plot an Effect Against a Moderator
-
pseudo_johnson_neyman()johnson_neyman()print(<pseudo_johnson_neyman>) - Pseudo Johnson-Neyman Probing
-
indirect_proportion() - Proportion of Effect Mediated
-
delta_med() - Delta_Med by Liu, Yuan, and Li (2023)
Moderator Levels
Set the levels of moderators to be used in cond_indirect_effects() and cond_indirect().
-
mod_levels()mod_levels_list() - Create Levels of Moderators
-
merge_mod_levels() - Merge the Generated Levels of Moderators
Bootstrapping
Generate bootstrap estimates to be used by the main functions to form bootstrap confidence intervals
-
do_boot() - Bootstrap Estimates for 'indirect_effects' and 'cond_indirect_effects'
-
lm2boot_out()lm2boot_out_parallel() - Bootstrap Estimates for
lmOutputs
-
fit2boot_out()fit2boot_out_do_boot() - Bootstrap Estimates for a
lavaanOutput
Monte Carlo
Generate simulated estimates to be used by the main functions to form Monte Carlo confidence intervals
-
do_mc()gen_mc_est() - Monte Carlo Estimates for 'indirect_effects' and 'cond_indirect_effects'
-
fit2mc_out() - Monte Carlo Estimates for a
lavaanOutput
-
factor2var() - Create Dummy Variables
-
lm2list() - Join 'lm()' Output to Form an 'lm_list`-Class Object
-
coef(<indirect>) - Extract the Indirect Effect or Conditional Indirect Effect
-
confint(<indirect>) - Confidence Interval of Indirect Effect or Conditional Indirect Effect
-
print(<indirect>) - Print an 'indirect' Class Object
-
`+`(<indirect>)`-`(<indirect>) - Math Operators for 'indirect'-Class Objects
-
coef(<indirect_list>) - Extract the Indirect Effects from a 'indirect_list' Object
-
confint(<indirect_list>) - Confidence Intervals of Indirect Effects in an 'indirect_list' Object
-
print(<indirect_list>) - Print an 'indirect_list' Class Object
-
coef(<cond_indirect_effects>) - Estimates of Conditional Indirect Effects or Conditional Effects
-
confint(<cond_indirect_effects>) - Confidence Intervals of Indirect Effects or Conditional Indirect Effects
-
print(<cond_indirect_effects>)as.data.frame(<cond_indirect_effects>) - Print a 'cond_indirect_effects' Class Object
-
`[`(<cond_indirect_effects>) - Extraction Methods for 'cond_indirect_effects' Outputs
-
get_one_cond_indirect_effect()get_one_cond_effect()print_all_cond_indirect_effects()print_all_cond_effects() - Get The Conditional Indirect Effect for One Row of 'cond_indirect_effects' Output
-
coef(<cond_indirect_diff>) - Print the Output of 'cond_indirect_diff()'
-
confint(<cond_indirect_diff>) - Confidence Interval of the Output of 'cond_indirect_diff()'
-
print(<cond_indirect_diff>) - Print the Output of 'cond_indirect_diff'
-
print(<lm_list>) - Print an
lm_list-Class Object
-
summary(<lm_list>)print(<summary_lm_list>) - Summary of an
lm_list-Class Object
-
`[`(<wlevels>)`[<-`(<wlevels>)`[[<-`(<wlevels>) - Extraction Methods for a 'wlevels'-class Object
-
print(<all_paths>) - Print 'all_paths' Class Object
-
print(<boot_out>) - Print a
boot_out-Class Object
-
print(<mc_out>) - Print a
mc_out-Class Object
-
print(<indirect_proportion>) - Print an 'indirect_proportion'-Class Object
-
coef(<indirect_proportion>) - Extract the Proportion of Effect Mediated
-
print(<delta_med>) - Print a 'delta_med' Class Object
-
coef(<delta_med>) - Delta_Med in a 'delta_med'-Class Object
-
confint(<delta_med>) - Confidence Interval for Delta_Med in a 'delta_med'-Class Object
-
indirect_i() - Indirect Effect (No Bootstrapping)
-
check_path() - Check a Path Exists in a Model
-
lm_from_lavaan_list() - 'lavaan'-class to 'lm_from_lavaan_list'-Class
-
coef(<lm_from_lavaan>) - Coefficients of an 'lm_from_lavaan'-Class Object
-
terms(<lm_from_lavaan>) - Model Terms of an 'lm_from_lavaan'-Class Object
-
predict(<lm_from_lavaan>) - Predicted Values of a 'lm_from_lavaan'-Class Object
-
predict(<lm_from_lavaan_list>) - Predicted Values of an 'lm_from_lavaan_list'-Class Object
-
predict(<lm_list>) - Predicted Values of an 'lm_list'-Class Object
-
get_prod() - Product Terms (if Any) Along a Path
-
data_med - Sample Dataset: Simple Mediation
-
data_med_complicated - Sample Dataset: A Complicated Mediation Model
-
data_med_complicated_mg - Sample Dataset: A Complicated Mediation Model With Two Groups
-
data_med_mg - Sample Dataset: Simple Mediation With Two Groups
-
data_med_mod_a - Sample Dataset: Simple Mediation with a-Path Moderated
-
data_med_mod_ab - Sample Dataset: Simple Mediation with Both Paths Moderated (Two Moderators)
-
data_med_mod_ab1 - Sample Dataset: Simple Mediation with Both Paths Moderated By a Moderator
-
data_med_mod_b - Sample Dataset: Simple Mediation with b-Path Moderated
-
data_med_mod_b_mod - Sample Dataset: A Simple Mediation Model with b-Path Moderated-Moderation
-
data_med_mod_parallel - Sample Dataset: Parallel Mediation with Two Moderators
-
data_med_mod_parallel_cat - Sample Dataset: Parallel Moderated Mediation with Two Categorical Moderators
-
data_med_mod_serial - Sample Dataset: Serial Mediation with Two Moderators
-
data_med_mod_serial_cat - Sample Dataset: Serial Moderated Mediation with Two Categorical Moderators
-
data_med_mod_serial_parallel - Sample Dataset: Serial-Parallel Mediation with Two Moderators
-
data_med_mod_serial_parallel_cat - Sample Dataset: Serial-Parallel Moderated Mediation with Two Categorical Moderators
-
data_mod - Sample Dataset: One Moderator
-
data_mod2 - Sample Dataset: Two Moderators
-
data_mod_cat - Sample Dataset: Moderation with One Categorical Moderator
-
data_mome_demo - Sample Dataset: A Complicated Moderated-Mediation Model
-
data_mome_demo_missing - Sample Dataset: A Complicated Moderated-Mediation Model With Missing Data
-
data_parallel - Sample Dataset: Parallel Mediation
-
data_sem - Sample Dataset: A Latent Variable Mediation Model With 4 Factors
-
data_serial - Sample Dataset: Serial Mediation
-
data_serial_parallel - Sample Dataset: Serial-Parallel Mediation
-
data_serial_parallel_latent - Sample Dataset: A Latent Mediation Model With Three Mediators
-
modmed_x1m3w4y1 - Sample Dataset: Moderated Serial Mediation
-
simple_mediation_latent - Sample Dataset: A Simple Latent Mediation Model