Print the content of
a delta_med
-class object.
Usage
# S3 method for class 'delta_med'
print(x, digits = 3, level = NULL, full = FALSE, boot_type, ...)
Arguments
- x
A
delta_med
-class object.- digits
The number of digits after the decimal. Default is 3.
- level
The level of confidence of bootstrap confidence interval, if requested when created. If
NULL
, the default, the level requested when callingdelta_med()
is used. If not null, then this level will be used.- full
Logical. Whether additional information will be printed. Default is
FALSE
.- boot_type
If bootstrap confidence interval is to be formed, the type of bootstrap confidence interval. The supported types are
"perc"
(percentile bootstrap confidence interval, the recommended method) and"bc"
(bias-corrected, or BC, bootstrap confidence interval). If not supplied, the storedboot_type
will be used.- ...
Optional arguments. Ignored.
Details
It prints the output of
delta_med()
, which is a
delta_med
-class object.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
library(lavaan)
dat <- data_med
mod <-
"
m ~ x
y ~ m + x
"
fit <- sem(mod, dat)
dm <- delta_med(x = "x",
y = "y",
m = "m",
fit = fit)
dm
#> Call:
#> delta_med(x = "x", y = "y", m = "m", fit = fit)
#>
#> Predictor (x) : x
#> Mediator(s) (m) : m
#> Outcome variable (y): y
#>
#> Delta_med: 0.230
#>
#> Paths removed:
#> m~x
print(dm, full = TRUE)
#> Call:
#> delta_med(x = "x", y = "y", m = "m", fit = fit)
#>
#> Predictor (x) : x
#> Mediator(s) (m) : m
#> Outcome variable (y): y
#>
#> Delta_med: 0.230
#>
#> Paths removed:
#> m~x
#>
#> Additional information:
#> R-sq: Original : 0.351
#> R-sq: Mediator(s) removed : 0.121
#> Variance of y : 6.273
#> Variance of predicted y : 2.203
#> Variance of predicted: mediator(s) removed: 0.759
# Call do_boot() to generate
# bootstrap estimates
# Use 2000 or even 5000 for R in real studies
# Set parallel to TRUE in real studies for faster bootstrapping
boot_out <- do_boot(fit,
R = 45,
seed = 879,
parallel = FALSE,
progress = FALSE)
# Remove 'progress = FALSE' in practice
dm_boot <- delta_med(x = "x",
y = "y",
m = "m",
fit = fit,
boot_out = boot_out,
progress = FALSE)
dm_boot
#> Call:
#> delta_med(x = "x", y = "y", m = "m", fit = fit, boot_out = boot_out,
#> progress = FALSE)
#>
#> Predictor (x) : x
#> Mediator(s) (m) : m
#> Outcome variable (y): y
#>
#> Delta_med : 0.230
#> 95.0% Bootstrap percentile confidence interval: [0.097, 0.318]
#> Number of bootstrap samples : 45
#>
#> Paths removed:
#> m~x
confint(dm_boot)
#> Percentile 2.5 % Percentile 97.5 %
#> Delta_Med 0.09725932 0.3175632
confint(dm_boot,
level = .90)
#> Percentile 5 % Percentile 95 %
#> Delta_Med 0.121015 0.294301