The summary of content
of the output of lm2list().
Arguments
- object
The output of
lm2list().- betaselect
If
TRUE, standardized coefficients are computed and included in the printout. Only numeric variables will be computed, and any derived terms, such as product terms, will be formed after standardization. Default isFALSE.- ci
If
TRUE, confidence interval based on t statistic and standard error will be computed and added to the output. Default isFALSE.- level
The level of confidence of the confidence interval. Ignored if
ciis notTRUE.- ...
Other arguments. Not used.
- x
An object of class
summary_lm_list.- digits
The number of significant digits in printing numerical results.
- digits_decimal
The number of digits after the decimal in printing numerical results. Default is
NULL. If set to an integer, numerical results in the coefficient table will be printed according this setting, anddigitswill be ignored.
Value
summary.lm_list() returns a
summary_lm_list-class object, which
is a list of the summary() outputs
of the lm() outputs stored.
print.summary_lm_list() returns x
invisibly. Called for its side
effect.
Examples
data(data_serial_parallel)
lm_m11 <- lm(m11 ~ x + c1 + c2, data_serial_parallel)
lm_m12 <- lm(m12 ~ m11 + x + c1 + c2, data_serial_parallel)
lm_m2 <- lm(m2 ~ x + c1 + c2, data_serial_parallel)
lm_y <- lm(y ~ m11 + m12 + m2 + x + c1 + c2, data_serial_parallel)
# Join them to form a lm_list-class object
lm_serial_parallel <- lm2list(lm_m11, lm_m12, lm_m2, lm_y)
lm_serial_parallel
#>
#> The model(s):
#> m11 ~ x + c1 + c2
#> m12 ~ m11 + x + c1 + c2
#> m2 ~ x + c1 + c2
#> y ~ m11 + m12 + m2 + x + c1 + c2
#>
summary(lm_serial_parallel)
#>
#>
#> Model:
#> m11 ~ x + c1 + c2
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 11.4546 1.1258 10.17 < 2e-16 ***
#> x 0.8001 0.0953 8.39 4.2e-13 ***
#> c1 0.0855 0.1020 0.84 0.404
#> c2 -0.2444 0.1002 -2.44 0.017 *
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.459. Adjusted R-square = 0.442. F(3, 96) = 27.148, p < .001
#>
#> Model:
#> m12 ~ m11 + x + c1 + c2
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 9.8742 1.5048 6.56 2.8e-09 ***
#> m11 0.4652 0.0946 4.92 3.7e-06 ***
#> x 0.1146 0.1164 0.98 0.3274
#> c1 0.1934 0.0949 2.04 0.0444 *
#> c2 -0.2848 0.0957 -2.97 0.0037 **
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.469. Adjusted R-square = 0.446. F(4, 95) = 20.963, p < .001
#>
#> Model:
#> m2 ~ x + c1 + c2
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 2.354 1.236 1.91 0.06 .
#> x 0.435 0.105 4.15 7.1e-05 ***
#> c1 0.178 0.112 1.59 0.12
#> c2 -0.167 0.110 -1.52 0.13
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.196. Adjusted R-square = 0.171. F(3, 96) = 7.812, p < .001
#>
#> Model:
#> y ~ m11 + m12 + m2 + x + c1 + c2
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) -1.791908 4.613263 -0.39 0.69859
#> m11 0.203249 0.266930 0.76 0.44832
#> m12 0.519112 0.255389 2.03 0.04494 *
#> m2 0.838632 0.217639 3.85 0.00021 ***
#> x 0.071421 0.317264 0.23 0.82238
#> c1 -0.000114 0.244934 0.00 0.99963
#> c2 -0.069787 0.253231 -0.28 0.78348
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.315. Adjusted R-square = 0.271. F(6, 93) = 7.133, p < .001
