
Package index
-
power4test()
print(<power4test>)
- Estimate the Power of a Test
-
power4test_by_n()
c(<power4test_by_n>)
as.power4test_by_n()
print(<power4test_by_n>)
- Power By Sample Sizes
-
power4test_by_es()
c(<power4test_by_es>)
as.power4test_by_es()
print(<power4test_by_es>)
- Power By Effect Sizes
-
x_from_power()
n_from_power()
n_region_from_power()
print(<x_from_power>)
print(<n_region_from_power>)
- Sample Size and Effect Size Determination
-
rejection_rates()
print(<rejection_rates_df>)
- Rejection Rates
-
plot(<x_from_power>)
plot(<n_region_from_power>)
- Plot The Results of 'x_from_power'
-
summary(<x_from_power>)
summary(<n_region_from_power>)
print(<summary.x_from_power>)
print(<summary.n_region_from_power>)
- Summarize 'x_from_power' Results
-
power_curve()
print(<power_curve>)
- Power Curve
-
plot(<power_curve>)
plot(<power4test_by_n>)
plot(<power4test_by_es>)
- Plot a Power Curve
-
predict(<power_curve>)
- Predict Method for a 'power_curve' Object
Test Functions
Built-in functions for do common tests such as testing indirect effects and model parameters.
-
test_indirect_effect()
- Test an Indirect Effect
-
test_k_indirect_effects()
- Test Several Indirect Effects
-
test_cond_indirect()
- Test a Conditional Indirect Effect
-
test_cond_indirect_effects()
- Test Several Conditional Indirect Effects
-
test_moderation()
- Test All Moderation Effects
-
test_index_of_mome()
- Test a Moderated Mediation Effect
-
test_parameters()
find_par_names()
- Test All Free Parameters
Advanced Functions
For advanced users to do the power analysis step-by-step or build a customized workflow.
-
ptable_pop()
model_matrices_pop()
- Generate the Population Model
-
sim_data()
print(<sim_data>)
pool_sim_data()
- Simulate Datasets Based on a Model
-
fit_model()
- Fit a Model to a List of Datasets
-
gen_mc()
- Generate Monte Carlo Estimates
-
gen_boot()
- Generate Bootstrap Estimates
-
sim_out()
print(<sim_out>)
- Create a 'sim_out' Object
-
do_test()
- Do a Test on Each Replication
-
rbeta_rs()
- Random Variable From a Beta Distribution
-
rbeta_rs2()
- Random Variable From a Beta Distribution (User Range)
-
rbinary_rs()
- Random Binary Variable
-
rexp_rs()
- Random Variable From an Exponential Distribution
-
rlnorm_rs()
- Random Variable From a Lognormal Distribution
-
rpgnorm_rs()
- Random Variable From a Generalized Normal Distribution
-
rt_rs()
- Random Variable From a t Distribution
-
runif_rs()
- Random Variable From a Uniform Distribution
-
summarize_tests()
print(<test_summary_list>)
print(<test_summary>)
print(<test_out_list>)
- Summarize Test Results
-
pop_es_yaml()
- Parse YAML-Stye Values For 'pop_es'