Get a list of the output
of lavaan::sem() or lmhelprs::many_lm()
and generate
bootstrap estimates of model
parameters.
Usage
gen_boot(
fit_all,
R = 100,
...,
iseed = NULL,
parallel = FALSE,
progress = FALSE,
ncores = max(1, parallel::detectCores(logical = FALSE) - 1),
compute_implied_stats = FALSE
)Arguments
- fit_all
The output of
fit_model()or an object of the classfit_out.- R
The number of replications to generate the bootstrap estimates for each fit output.
- ...
Optional arguments to be passed to
manymome::do_boot()when generating the bootstrap estimates.- iseed
The seed for the random number generator. Default is
NULLand the seed is not changed.- parallel
If
TRUE, parallel processing will be used to generate bootstrap estimates for the fit outputs. Default isFALSE.- progress
If
TRUE, the progress will be displayed. Default is `FALSE.- ncores
The number of CPU cores to use if parallel processing is used.
- compute_implied_stats
Whether implied statistics are computed in each bootstrap samples. Usually not needed and so default to
FALSE
Value
A boot_list object, which is a list
of the output of manymome::do_boot().
Details
The function gen_boot()
simply calls manymome::do_boot()
on each output of
lavaan::sem() or lmhelprs::many_lm()
in fit_all. The
simulated
estimates can then be used to test
effects such as indirect effects,
usually by functions from the
manymome package, such as
manymome::indirect_effect().
The role of gen_boot()
This function is used by the
all-in-one function power4test().
Users usually do not call this
function directly, though
developers can use this function to
customize the workflow of the
power analysis.
See also
See power4test() for
the all-in-one function that uses
this function.
Examples
# Specify the population model
mod <-
"m ~ x
y ~ m + x"
# Specify the effect sizes (population parameter values)
es <-
"
y ~ m: m
m ~ x: m
y ~ x: n
"
# Generate several simulated datasets
data_all <- sim_data(nrep = 2,
model = mod,
pop_es = es,
n = 50,
iseed = 1234)
# Fit the population model to each datasets
fit_all <- fit_model(data_all)
# Generate bootstrap estimates for each replication
boot_all <- gen_boot(fit_all,
R = 10,
iseed = 4567)
boot_all
#> [[1]]
#>
#> == A 'boot_out' class object ==
#>
#> Number of bootstrap samples: 10
#>
#>
#> [[2]]
#>
#> == A 'boot_out' class object ==
#>
#> Number of bootstrap samples: 10
#>
#>
#> attr(,"class")
#> [1] "boot_list" "list"
