Compute the variance-covariance matrix
of estimates in the output of std_selected()
or
std_selected_boot()
.
# S3 method for std_selected
vcov(object, type, ...)
The output of std_selected()
or std_selected_boot()
.
The type of variance-covariance matrix. If set to "lm"
,
returns the results of the stats::vcov()
method for the output of
lm()
. If set to "boot"
,
the variance-covariance matrix of the bootstrap estimates
is returned.
Default depends on object
. If bootstrap estimates were stored,
then the default is "boot"
. Otherwise, the default is "lm"
.
Arguments to be passed to stats::vcov()
.
A matrix of the variances and covariances of the parameter estimates.
If bootstrapping was used to form the confidence intervals, users can request the variance-covariance matrix of the bootstrap estimates.
# Load a sample data set
dat <- test_x_1_w_1_v_1_cat1_n_500
head(dat)
#> dv iv mod v1 cat1
#> 1 4946.751 12.76737 96.85621 11.756899 gp1
#> 2 6635.081 14.89097 106.25696 11.371237 gp2
#> 3 6060.708 15.24101 97.85852 9.377471 gp2
#> 4 7240.781 16.65782 104.80266 10.508913 gp1
#> 5 5775.759 11.84448 95.85912 15.093480 gp3
#> 6 7725.783 16.31270 100.20561 3.442902 gp2
# Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
# Standardize all variables except for categorical variables.
# Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,
to_center = ~ .)
# VCOV of lm output
vcov(lm_std)
#> (Intercept) iv mod v1
#> (Intercept) 2.328093e-03 -2.424492e-05 -4.453643e-05 5.904665e-07
#> iv -2.424492e-05 7.487428e-04 -3.910411e-05 -1.570052e-06
#> mod -4.453643e-05 -3.910411e-05 7.490437e-04 4.323374e-05
#> v1 5.904665e-07 -1.570052e-06 4.323374e-05 7.466559e-04
#> cat1gp2 -2.327318e-03 -5.104838e-06 9.054077e-05 3.534309e-05
#> cat1gp3 -2.327547e-03 7.491390e-05 2.729951e-05 -5.249772e-05
#> iv:mod -3.979516e-05 5.489704e-05 4.037895e-05 4.206434e-05
#> cat1gp2 cat1gp3 iv:mod
#> (Intercept) -2.327318e-03 -2.327547e-03 -3.979516e-05
#> iv -5.104838e-06 7.491390e-05 5.489704e-05
#> mod 9.054077e-05 2.729951e-05 4.037895e-05
#> v1 3.534309e-05 -5.249772e-05 4.206434e-05
#> cat1gp2 4.309522e-03 2.323477e-03 -1.319904e-06
#> cat1gp3 2.323477e-03 4.733274e-03 1.279117e-05
#> iv:mod -1.319904e-06 1.279117e-05 6.477400e-04
# Standardize all variables as in std_selected above, and compute the
# nonparametric bootstrapping percentile confidence intervals.
lm_std_boot <- std_selected_boot(lm_raw,
to_scale = ~ .,
to_center = ~ .,
conf = .95,
nboot = 100)
# In real analysis, nboot should be at least 2000.
# VCOV of bootstrap estimates, default when bootstrap was conducted
vcov(lm_std_boot)
#> (Intercept) iv mod v1
#> (Intercept) 1.536489e-03 9.568250e-05 -1.095276e-04 0.0001865437
#> iv 9.568250e-05 4.146328e-04 -2.432351e-04 0.0000340697
#> mod -1.095276e-04 -2.432351e-04 7.260336e-04 0.0001532043
#> v1 1.865437e-04 3.406970e-05 1.532043e-04 0.0010457165
#> cat1gp2 -2.410846e-03 -2.734371e-04 2.458697e-04 -0.0003150773
#> cat1gp3 -2.069590e-03 2.855683e-05 2.656795e-05 -0.0002051235
#> iv:mod 9.113406e-05 1.294361e-04 -1.132562e-04 -0.0001200609
#> cat1gp2 cat1gp3 iv:mod
#> (Intercept) -0.0024108465 -2.069590e-03 9.113406e-05
#> iv -0.0002734371 2.855683e-05 1.294361e-04
#> mod 0.0002458697 2.656795e-05 -1.132562e-04
#> v1 -0.0003150773 -2.051235e-04 -1.200609e-04
#> cat1gp2 0.0045177085 2.407089e-03 -3.947109e-04
#> cat1gp3 0.0024070895 3.914567e-03 8.545288e-05
#> iv:mod -0.0003947109 8.545288e-05 4.998478e-04
# For OLS VCOV
vcov(lm_std_boot, type = "lm")
#> (Intercept) iv mod v1
#> (Intercept) 2.328093e-03 -2.424492e-05 -4.453643e-05 5.904665e-07
#> iv -2.424492e-05 7.487428e-04 -3.910411e-05 -1.570052e-06
#> mod -4.453643e-05 -3.910411e-05 7.490437e-04 4.323374e-05
#> v1 5.904665e-07 -1.570052e-06 4.323374e-05 7.466559e-04
#> cat1gp2 -2.327318e-03 -5.104838e-06 9.054077e-05 3.534309e-05
#> cat1gp3 -2.327547e-03 7.491390e-05 2.729951e-05 -5.249772e-05
#> iv:mod -3.979516e-05 5.489704e-05 4.037895e-05 4.206434e-05
#> cat1gp2 cat1gp3 iv:mod
#> (Intercept) -2.327318e-03 -2.327547e-03 -3.979516e-05
#> iv -5.104838e-06 7.491390e-05 5.489704e-05
#> mod 9.054077e-05 2.729951e-05 4.037895e-05
#> v1 3.534309e-05 -5.249772e-05 4.206434e-05
#> cat1gp2 4.309522e-03 2.323477e-03 -1.319904e-06
#> cat1gp3 2.323477e-03 4.733274e-03 1.279117e-05
#> iv:mod -1.319904e-06 1.279117e-05 6.477400e-04