Skip to contents

Summarize the results of std_selected() or std_selected_boot().

Usage

# S3 method for class 'std_selected'
summary(object, ...)

Arguments

object

The output of std_selected() or std_selected_boot().

...

Additional arguments. Ignored by this function.

Value

An object of class summary.std_selected, with bootstrap confidence intervals added if present in the object. The object is a list. Its main element coefficients is similar to the coefficient table in the summary() printout of lm(). This object is for printing summary information of the results from std_selected() or std_selected_boot().

Examples


# Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

# Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -2146.0  -431.9   -25.0   411.2  2309.3 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)  308.767   4075.066   0.076   0.9396  
#> iv            52.760    271.242   0.195   0.8459  
#> mod            5.127     40.772   0.126   0.9000  
#> v1           -12.760     10.174  -1.254   0.2104  
#> cat1gp2     -158.673     71.834  -2.209   0.0276 *
#> cat1gp3      -43.166     75.283  -0.573   0.5666  
#> iv:mod         3.416      2.709   1.261   0.2080  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 665 on 493 degrees of freedom
#> Multiple R-squared:  0.6352,	Adjusted R-squared:  0.6307 
#> F-statistic:   143 on 6 and 493 DF,  p-value: < 2.2e-16
#> 

# Standardize all variables except for categorical variables.
# Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,
                               to_center = ~ .)
summary(lm_std)
#> 
#> Call to std_selected():
#> std_selected(lm_out = lm_raw, to_scale = ~., to_center = ~.)
#> 
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#> 
#>      centered_by   scaled_by                            Note
#> dv    6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv      15.01576    2.039154 Standardized (mean = 0, SD = 1)
#> mod    100.39502    5.040823 Standardized (mean = 0, SD = 1)
#> v1      10.13884    2.938932 Standardized (mean = 0, SD = 1)
#> cat1          NA          NA Nonnumeric                     
#> 
#> Note:
#> - Categorical variables will not be centered or scaled even if
#>   requested.
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.96117 -0.39474 -0.02285  0.37579  2.11040 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)   0.0646     0.0483  1.3385  0.18136    
#> iv            0.7374     0.0274 26.9480  < 0.001 ***
#> mod           0.2599     0.0274  9.4962  < 0.001 ***
#> v1           -0.0343     0.0273 -1.2542  0.21037    
#> cat1gp2      -0.1450     0.0656 -2.2089  0.02764 *  
#> cat1gp3      -0.0394     0.0688 -0.5734  0.56664    
#> iv:mod        0.0321     0.0255  1.2608  0.20799    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.6077 on 493 degrees of freedom
#> 
#> R-squared                : 0.6352
#> Adjusted R-squared       : 0.6307
#> ANOVA test of R-squared  : F(6, 493) = 143.047, p < 0.001
#> 
#> = Test the highest order term =
#> The highest order term             : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase       : F(1, 493) = 1.5895, p = 0.208
#> 
#> Note:
#> - Estimates and their statistics are based on the data after
#>   mean-centering, scaling, or standardization.
#> - One or more variables are scaled by SD or standardized. OLS standard
#>   errors and confidence intervals may be biased for their coefficients.
#>   Please use `std_selected_boot()`.
#> 

# With bootstrapping
# nboot = 100 just for illustration. nboot >= 2000 should be used in read
# research.
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,
                                         to_center = ~ .,
                                         nboot = 100)
summary(lm_std_boot)
#> 
#> Call to std_selected_boot():
#> std_selected_boot(lm_out = lm_raw, to_scale = ~., to_center = ~., 
#>     nboot = 100)
#> 
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#> 
#>      centered_by   scaled_by                            Note
#> dv    6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv      15.01576    2.039154 Standardized (mean = 0, SD = 1)
#> mod    100.39502    5.040823 Standardized (mean = 0, SD = 1)
#> v1      10.13884    2.938932 Standardized (mean = 0, SD = 1)
#> cat1          NA          NA Nonnumeric                     
#> 
#> Note:
#> - Categorical variables will not be centered or scaled even if
#>   requested.
#> - Nonparametric bootstrapping 95% confidence intervals computed.
#> - The number of bootstrap samples is 100.
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.96117 -0.39474 -0.02285  0.37579  2.11040 
#> 
#> Coefficients:
#>             Estimate CI Lower CI Upper Std. Error t value Pr(>|t|)    
#> (Intercept)   0.0646  -0.0127   0.1449     0.0483  1.3385  0.18136    
#> iv            0.7374   0.7008   0.7757     0.0274 26.9480  < 0.001 ***
#> mod           0.2599   0.1996   0.3148     0.0274  9.4962  < 0.001 ***
#> v1           -0.0343  -0.0960   0.0372     0.0273 -1.2542  0.21037    
#> cat1gp2      -0.1450  -0.3026  -0.0365     0.0656 -2.2089  0.02764 *  
#> cat1gp3      -0.0394  -0.1389   0.0882     0.0688 -0.5734  0.56664    
#> iv:mod        0.0321  -0.0124   0.0633     0.0255  1.2608  0.20799    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.6077 on 493 degrees of freedom
#> 
#> R-squared                : 0.6352
#> Adjusted R-squared       : 0.6307
#> ANOVA test of R-squared  : F(6, 493) = 143.047, p < 0.001
#> 
#> = Test the highest order term =
#> The highest order term             : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase       : F(1, 493) = 1.5895, p = 0.208
#> 
#> Note:
#> - Estimates and their statistics are based on the data after
#>   mean-centering, scaling, or standardization.
#> - [CI Lower, CI Upper] are bootstrap percentile confidence intervals.
#> - Std. Error are not bootstrap SEs.
#>