R/stdmod_lavaan.R
stdmod_lavaan.Rd
Compute the standardized moderation effect in a structural
equation model fitted by lavaan::lavaan()
or its wrappers and
form the nonparametric bootstrap confidence interval.
stdmod_lavaan(fit, x, y, w, x_w, boot_ci = FALSE, R = 100, conf = 0.95, ...)
The SEM output by lavaan::lavaan()
or its wrappers.
The name of the focal variable in the model, the variable with its effect on the outcome variable being moderated.
The name of the outcome variable (dependent variable) in the model.
The name of the moderator in the model.
The name of the product term (x * w) in the model. It can be
the variable generated by the colon operator, e.g., "x:w"
,
which is only in the model and not in the original data set.
Boolean. Whether nonparametric bootstrapping will be
conducted. Default is FALSE
.
The number of nonparametric bootstrapping samples. Default is 100. Set this to at least 2000 in actual use.
The level of confidence. Default is .95, i.e., 95%.
Optional arguments to be passed to boot::boot()
. Parallel
processing can be used by adding the appropriate arguments in
boot::boot()
.
A list of class stdmod_lavaan
with these elements:
stdmod
: The standardized moderation effect.
ci
: The nonparametric bootstrap confidence interval. NA
if
confidence interval not requested.
boot_out
: The raw output from boot::boot()
. NA
if
confidence interval not requested.
fit
: The original fit object.
stdmod_lavaan()
accepts a lavaan::lavaan object, the
structural equation model output returned
by lavaan::lavaan()
and its wrappers (e.g, lavaan::sem()
) and computes
the standardized moderation effect using the formula in the appendix of
Cheung, Cheung, Lau, Hui, and Vong (2022).
The standard deviations of the focal variable (the variable with its effect
on the outcome variable being moderated), moderator, and outcome
variable (dependent variable) are computed from the implied
covariance matrix returned by
lavaan::lavInspect()
. Therefore, models fitted to data sets with missing
data (e.g., with missing = "fiml"
) are also supported.
If nonparametric bootstrap confidence interval is requested with R
bootstrap samples, the model will be fitted R
times to these samples,
and the standardized
moderation effect will be computed in each sample. This ensures that all
components used in the computation, including the standard deviations, are
also computed from the bootstrapping samples.
Note that the computation can be slow because lavaan::lavaan()
or its
wrappers
will be called
R
times.
Cheung, S. F., Cheung, S.-H., Lau, E. Y. Y., Hui, C. H., & Vong, W. N. (2022) Improving an old way to measure moderation effect in standardized units. Health Psychology, 41(7), 502-505. doi:10.1037/hea0001188
#Load a test data of 500 cases
dat <- test_mod1
library(lavaan)
mod <-
"
med ~ iv + mod + iv:mod + cov1
dv ~ med + cov2
"
fit <- sem(mod, dat)
# Compute the standardized moderation effect
out_noboot <- stdmod_lavaan(fit = fit,
x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod")
out_noboot
#>
#> Call:
#> stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod")
#>
#> Variable
#> Focal Variable iv
#> Moderator mod
#> Outcome Variable med
#> Product Term iv:mod
#>
#> lhs op rhs est se z pvalue ci.lower ci.upper
#> Original med ~ iv:mod 0.257 0.025 10.169 0 0.208 0.307
#> Standardized med ~ iv:mod 0.440 NA NA NA NA NA
# Compute the standardized moderation effect and
# its percentile confidence interval using
# nonparametric bootstrapping
set.seed(8479075)
system.time(out_boot <- stdmod_lavaan(fit = fit,
x = "iv",
y = "med",
w = "mod",
x_w = "iv:mod",
boot_ci = TRUE,
R = 50))
#> user system elapsed
#> 0.882 0.029 0.888
# In real analysis, R should be at least 2000.
out_boot
#>
#> Call:
#> stdmod_lavaan(fit = fit, x = "iv", y = "med", w = "mod", x_w = "iv:mod",
#> boot_ci = TRUE, R = 50)
#>
#> Variable
#> Focal Variable iv
#> Moderator mod
#> Outcome Variable med
#> Product Term iv:mod
#>
#> lhs op rhs est se z pvalue ci.lower ci.upper
#> Original med ~ iv:mod 0.257 0.025 10.169 0 0.208 0.307
#> Standardized med ~ iv:mod 0.440 NA NA NA 0.296 0.523
#>
#> Confidence interval of standardized moderation effect:
#> - Level of confidence: 95%
#> - Bootstrapping Method: Nonparametric
#> - Type: Percentile
#> - Number of bootstrap samples requests: 50
#> - Number of bootstrap samples with valid results: 50