Print the Summary of a 'std_selected' Class Object
Source:R/print_summary_stdmod.R
print.summary.std_selected.Rd
Print the summary generated by summary()
on the output
of std_selected()
or std_selected_boot()
.
Usage
# S3 method for class 'summary.std_selected'
print(
x,
...,
est_digits = 4,
t_digits = 4,
pvalue_less_than = 0.001,
default_style = FALSE
)
Arguments
- x
The output of
summary()
.- ...
Arguments to be passed to
summary()
.- est_digits
The number of digits after the decimal to be displayed for the coefficient estimates, their standard errors, and bootstrap confidence intervals (if present). Note that the values will be rounded to this number of digits before printing. If all digits at this position are zero for all values, the values may be displayed with fewer digits. Note that the coefficient table is printed by
stats::printCoefmat()
. If some numbers are vary large, the number of digits after the decimal may be smaller thanest_digits
due to a limit on the column width. This value also determines the number of digits for displayed R-squared ifdefault_style
isFALSE
. Default if 4.- t_digits
The number of digits after the decimal to be displayed for the t statistic (in the column
"t value"
). This value also determines the number of digits for the F statistic for the R-squared ifdefault_style
isFALSE
. Default is 4.- pvalue_less_than
If a p-value is less than this value, it will be displayed with
"<(this value)".
For example, ifpvalue_less_than
is .001, the default, p-values less than .001 will be displayed as<.001
. This value also determines the printout of the p-value of the F statistic ifdefault_style
isFALSE
. (This argument does whateps.Pvalue
does instats::printCoefmat()
.)- default_style
Logical. If
FALSE
, the default, R-squared and F statistic will be displayed in a more readable style. IfTRUE
, then the default style in the printout of thesummary
oflm()
output will be used.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
# Load a sample data set
dat <- test_x_1_w_1_v_1_cat1_n_500
# Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
# Standardize all variables except for categorical variables.
# Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_scale = ~ .,
to_center = ~ .)
summary(lm_std)
#>
#> Call to std_selected():
#> std_selected(lm_out = lm_raw, to_scale = ~., to_center = ~.)
#>
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#>
#> centered_by scaled_by Note
#> dv 6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv 15.01576 2.039154 Standardized (mean = 0, SD = 1)
#> mod 100.39502 5.040823 Standardized (mean = 0, SD = 1)
#> v1 10.13884 2.938932 Standardized (mean = 0, SD = 1)
#> cat1 NA NA Nonnumeric
#>
#> Note:
#> - Categorical variables will not be centered or scaled even if
#> requested.
#>
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.96117 -0.39474 -0.02285 0.37579 2.11040
#>
#> Coefficients:
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 0.0646 0.0483 1.3385 0.18136
#> iv 0.7374 0.0274 26.9480 < 0.001 ***
#> mod 0.2599 0.0274 9.4962 < 0.001 ***
#> v1 -0.0343 0.0273 -1.2542 0.21037
#> cat1gp2 -0.1450 0.0656 -2.2089 0.02764 *
#> cat1gp3 -0.0394 0.0688 -0.5734 0.56664
#> iv:mod 0.0321 0.0255 1.2608 0.20799
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.6077 on 493 degrees of freedom
#>
#> R-squared : 0.6352
#> Adjusted R-squared : 0.6307
#> ANOVA test of R-squared : F(6, 493) = 143.047, p < 0.001
#>
#> = Test the highest order term =
#> The highest order term : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase : F(1, 493) = 1.5895, p = 0.208
#>
#> Note:
#> - Estimates and their statistics are based on the data after
#> mean-centering, scaling, or standardization.
#> - One or more variables are scaled by SD or standardized. OLS standard
#> errors and confidence intervals may be biased for their coefficients.
#> Please use `std_selected_boot()`.
#>
# With bootstrapping
# nboot = 100 just for illustration. nboot >= 2000 should be used in read
# research.
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,
to_center = ~ .,
nboot = 100)
summary(lm_std_boot)
#>
#> Call to std_selected_boot():
#> std_selected_boot(lm_out = lm_raw, to_scale = ~., to_center = ~.,
#> nboot = 100)
#>
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#>
#> centered_by scaled_by Note
#> dv 6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv 15.01576 2.039154 Standardized (mean = 0, SD = 1)
#> mod 100.39502 5.040823 Standardized (mean = 0, SD = 1)
#> v1 10.13884 2.938932 Standardized (mean = 0, SD = 1)
#> cat1 NA NA Nonnumeric
#>
#> Note:
#> - Categorical variables will not be centered or scaled even if
#> requested.
#> - Nonparametric bootstrapping 95% confidence intervals computed.
#> - The number of bootstrap samples is 100.
#>
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#>
#> Residuals:
#> Min 1Q Median 3Q Max
#> -1.96117 -0.39474 -0.02285 0.37579 2.11040
#>
#> Coefficients:
#> Estimate CI Lower CI Upper Std. Error t value Pr(>|t|)
#> (Intercept) 0.0646 -0.0155 0.1478 0.0483 1.3385 0.18136
#> iv 0.7374 0.6969 0.7777 0.0274 26.9480 < 0.001 ***
#> mod 0.2599 0.2143 0.3117 0.0274 9.4962 < 0.001 ***
#> v1 -0.0343 -0.0883 0.0217 0.0273 -1.2542 0.21037
#> cat1gp2 -0.1450 -0.2725 -0.0274 0.0656 -2.2089 0.02764 *
#> cat1gp3 -0.0394 -0.1774 0.0962 0.0688 -0.5734 0.56664
#> iv:mod 0.0321 -0.0178 0.0851 0.0255 1.2608 0.20799
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.6077 on 493 degrees of freedom
#>
#> R-squared : 0.6352
#> Adjusted R-squared : 0.6307
#> ANOVA test of R-squared : F(6, 493) = 143.047, p < 0.001
#>
#> = Test the highest order term =
#> The highest order term : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase : F(1, 493) = 1.5895, p = 0.208
#>
#> Note:
#> - Estimates and their statistics are based on the data after
#> mean-centering, scaling, or standardization.
#> - [CI Lower, CI Upper] are bootstrap percentile confidence intervals.
#> - Std. Error are not bootstrap SEs.
#>