Print the output of cond_effect()
or cond_effect_boot()
.
Usage
# S3 method for class 'cond_effect'
print(
x,
nd = 3,
nd_stat = 3,
nd_p = 3,
title = TRUE,
model = TRUE,
level_info = TRUE,
standardized = TRUE,
boot_info = TRUE,
table_only = FALSE,
t_ci = FALSE,
t_ci_level = 0.95,
...
)
Arguments
- x
The output of
cond_effect()
orcond_effect_boot()
.- nd
The number of digits for the variables.
- nd_stat
The number of digits for test statistics (e.g., t).
- nd_p
The number of digits for p-values.
- title
If
TRUE
, print a title. Default isTRUE
.- model
If
TRUE
, print the regression model. Default isTRUE
.- level_info
If
TRUE
, print information for interpreting the levels of the moderator, such as the values of the levels and distance from the mean. Default isTRUE
.- standardized
If
TRUE
and one or more variables are standardized, report it. Default isTRUE
.`- boot_info
If
TRUE
and bootstrap estimates are inx
, print information about the bootstrapping, such as the number of bootstrap samples. Default isTRUE
.- table_only
If
TRUE
, will suppress of other elements except for the table of conditional effects. Override arguments such astitle
,model
, andlevel_info
.- t_ci
If
TRUE
, will print the confidence intervals based on t statistics. These confidence intervals should not be used if some variables are standardized.- t_ci_level
The level of confidence of the confidence intervals based on t statistics. Default is .95.
- ...
Additional arguments. Ignored by this function.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
# Load a sample data set
dat <- test_x_1_w_1_v_1_cat1_n_500
# Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
cond_effect(lm_raw, x = iv, w = mod)
#> The effects of iv on dv, conditional on mod:
#>
#> Level mod iv Effect S.E. t p Sig
#> High 105.436 412.911 20.827 19.826 0.000 ***
#> Medium 100.395 395.693 14.684 26.948 0.000 ***
#> Low 95.354 378.474 19.249 19.662 0.000 ***
#>
#>
#> The regression model:
#>
#> dv ~ iv * mod + v1 + cat1
#>
#> Interpreting the levels of mod:
#>
#> Level mod % Below From Mean (in SD)
#> High 105.436 84.00 1.00
#> Medium 100.395 47.40 0.00
#> Low 95.354 17.20 -1.00
#>
#> - % Below: The percent of cases equal to or less than a level.
#> - From Mean (in SD): Distance of a level from the mean, in standard
#> deviation (+ve above, -ve below).
lm_std <- std_selected(lm_raw, to_scale = ~ iv + mod,
to_center = ~ iv + mod)
cond_effect(lm_std, x = iv, w = mod)
#> The effects of iv on dv, conditional on mod:
#>
#> Level mod iv Effect S.E. t p Sig
#> High 1.000 841.990 42.468 19.826 0.000 ***
#> Medium 0.000 806.878 29.942 26.948 0.000 ***
#> Low -1.000 771.767 39.251 19.662 0.000 ***
#>
#>
#> The regression model:
#>
#> dv ~ iv * mod + v1 + cat1
#>
#> Interpreting the levels of mod:
#>
#> Level mod % Below From Mean (in SD)
#> High 1.000 84.00 1.00
#> Medium 0.000 47.40 0.00
#> Low -1.000 17.20 -1.00
#>
#> - % Below: The percent of cases equal to or less than a level.
#> - From Mean (in SD): Distance of a level from the mean, in standard
#> deviation (+ve above, -ve below).
#>
#> Note:
#>
#> - The variable(s) iv, mod is/are standardized.
#> - One or more variables are scaled by SD or standardized. OLS standard
#> errors and confidence intervals may be biased for their coefficients.
#> Please use `cond_effect_boot()`.