Skip to contents

Return the confidence intervals of estimates in the output of std_selected() or std_selected_boot().

Usage

# S3 method for class 'std_selected'
confint(object, parm, level = 0.95, type, ...)

Arguments

object

The output of std_selected() or std_selected_boot().

parm

The parameters (coefficients) for which confidence intervals should be returned. If missing, the confidence intervals of all parameters will be returned.

level

The level of confidence. For the confidence intervals returned by lm(), default is .95, i.e., 95%. For the bootstrap percentile confidence intervals, default is the level used in calling std_selected_boot(). If a level different from that in the original call is specified, full_output needs to be set in the call to std_selected_boot() such that the original bootstrapping output is stored.

type

The type of the confidence intervals. If est to "lm", returns the confidence interval given by the confint() method of lm(). If set to "boot", the bootstrap percentile confidence intervals are returned. Default is "boot" if bootstrap estimates are stored in object, and "lm" if bootstrap estimates are not stored.

...

Arguments to be passed to summary.lm().

Value

A matrix of the confidence intervals.

Details

If bootstrapping is used to form the confidence interval by std_selected_boot(), users can request the percentile confidence intervals of the bootstrap estimates. This method does not do the bootstrapping itself.

Examples


# Load a sample data set

dat <- test_x_1_w_1_v_1_cat1_n_500

# Do a moderated regression by lm
lm_raw <- lm(dv ~ iv*mod + v1 + cat1, dat)
summary(lm_raw)
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -2146.0  -431.9   -25.0   411.2  2309.3 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)  308.767   4075.066   0.076   0.9396  
#> iv            52.760    271.242   0.195   0.8459  
#> mod            5.127     40.772   0.126   0.9000  
#> v1           -12.760     10.174  -1.254   0.2104  
#> cat1gp2     -158.673     71.834  -2.209   0.0276 *
#> cat1gp3      -43.166     75.283  -0.573   0.5666  
#> iv:mod         3.416      2.709   1.261   0.2080  
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 665 on 493 degrees of freedom
#> Multiple R-squared:  0.6352,	Adjusted R-squared:  0.6307 
#> F-statistic:   143 on 6 and 493 DF,  p-value: < 2.2e-16
#> 

# Standardize all variables except for categorical variables.
# Interaction terms are formed after standardization.
lm_std <- std_selected(lm_raw, to_center = ~ .,
                               to_scale = ~ .)
# Alternative: use to_standardize as a shortcut
# lm_std <- std_selected(lm_raw, to_standardize = ~ .)
summary(lm_std)
#> 
#> Call to std_selected():
#> std_selected(lm_out = lm_raw, to_scale = ~., to_center = ~.)
#> 
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#> 
#>      centered_by   scaled_by                            Note
#> dv    6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv      15.01576    2.039154 Standardized (mean = 0, SD = 1)
#> mod    100.39502    5.040823 Standardized (mean = 0, SD = 1)
#> v1      10.13884    2.938932 Standardized (mean = 0, SD = 1)
#> cat1          NA          NA Nonnumeric                     
#> 
#> Note:
#> - Categorical variables will not be centered or scaled even if
#>   requested.
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.96117 -0.39474 -0.02285  0.37579  2.11040 
#> 
#> Coefficients:
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)   0.0646     0.0483  1.3385  0.18136    
#> iv            0.7374     0.0274 26.9480  < 0.001 ***
#> mod           0.2599     0.0274  9.4962  < 0.001 ***
#> v1           -0.0343     0.0273 -1.2542  0.21037    
#> cat1gp2      -0.1450     0.0656 -2.2089  0.02764 *  
#> cat1gp3      -0.0394     0.0688 -0.5734  0.56664    
#> iv:mod        0.0321     0.0255  1.2608  0.20799    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.6077 on 493 degrees of freedom
#> 
#> R-squared                : 0.6352
#> Adjusted R-squared       : 0.6307
#> ANOVA test of R-squared  : F(6, 493) = 143.047, p < 0.001
#> 
#> = Test the highest order term =
#> The highest order term             : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase       : F(1, 493) = 1.5895, p = 0.208
#> 
#> Note:
#> - Estimates and their statistics are based on the data after
#>   mean-centering, scaling, or standardization.
#> - One or more variables are scaled by SD or standardized. OLS standard
#>   errors and confidence intervals may be biased for their coefficients.
#>   Please use `std_selected_boot()`.
#> 

confint(lm_std)
#>                   2.5 %      97.5 %
#> (Intercept) -0.03021975  0.15938347
#> iv           0.68362100  0.79114661
#> mod          0.20612513  0.31367234
#> v1          -0.08795872  0.01941694
#> cat1gp2     -0.27398880 -0.01602419
#> cat1gp3     -0.17462329  0.09572673
#> iv:mod      -0.01791790  0.08209267

# Use to_standardize as a shortcut
lm_std2 <- std_selected(lm_raw, to_standardize = ~ .)
# The results are the same
confint(lm_std)
#>                   2.5 %      97.5 %
#> (Intercept) -0.03021975  0.15938347
#> iv           0.68362100  0.79114661
#> mod          0.20612513  0.31367234
#> v1          -0.08795872  0.01941694
#> cat1gp2     -0.27398880 -0.01602419
#> cat1gp3     -0.17462329  0.09572673
#> iv:mod      -0.01791790  0.08209267
confint(lm_std2)
#>                   2.5 %      97.5 %
#> (Intercept) -0.03021975  0.15938347
#> iv           0.68362100  0.79114661
#> mod          0.20612513  0.31367234
#> v1          -0.08795872  0.01941694
#> cat1gp2     -0.27398880 -0.01602419
#> cat1gp3     -0.17462329  0.09572673
#> iv:mod      -0.01791790  0.08209267
all.equal(confint(lm_std), confint(lm_std2))
#> [1] TRUE

# With bootstrapping
# nboot = 100 just for illustration. nboot >= 2000 should be used in read
# research.
set.seed(89572)
lm_std_boot <- std_selected_boot(lm_raw, to_scale = ~ .,
                                         to_center = ~ .,
                                         nboot = 100)
summary(lm_std_boot)
#> 
#> Call to std_selected_boot():
#> std_selected_boot(lm_out = lm_raw, to_scale = ~., to_center = ~., 
#>     nboot = 100)
#> 
#> Selected variable(s) are centered by mean and/or scaled by SD
#> - Variable(s) centered: dv iv mod v1 cat1
#> - Variable(s) scaled: dv iv mod v1 cat1
#> 
#>      centered_by   scaled_by                            Note
#> dv    6565.02965 1094.244465 Standardized (mean = 0, SD = 1)
#> iv      15.01576    2.039154 Standardized (mean = 0, SD = 1)
#> mod    100.39502    5.040823 Standardized (mean = 0, SD = 1)
#> v1      10.13884    2.938932 Standardized (mean = 0, SD = 1)
#> cat1          NA          NA Nonnumeric                     
#> 
#> Note:
#> - Categorical variables will not be centered or scaled even if
#>   requested.
#> - Nonparametric bootstrapping 95% confidence intervals computed.
#> - The number of bootstrap samples is 100.
#> 
#> Call:
#> lm(formula = dv ~ iv * mod + v1 + cat1, data = dat_mod)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1.96117 -0.39474 -0.02285  0.37579  2.11040 
#> 
#> Coefficients:
#>             Estimate CI Lower CI Upper Std. Error t value Pr(>|t|)    
#> (Intercept)   0.0646  -0.0194   0.1257     0.0483  1.3385  0.18136    
#> iv            0.7374   0.6891   0.7934     0.0274 26.9480  < 0.001 ***
#> mod           0.2599   0.1974   0.3192     0.0274  9.4962  < 0.001 ***
#> v1           -0.0343  -0.0961   0.0171     0.0273 -1.2542  0.21037    
#> cat1gp2      -0.1450  -0.2710  -0.0123     0.0656 -2.2089  0.02764 *  
#> cat1gp3      -0.0394  -0.1477   0.0991     0.0688 -0.5734  0.56664    
#> iv:mod        0.0321  -0.0049   0.0863     0.0255  1.2608  0.20799    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 0.6077 on 493 degrees of freedom
#> 
#> R-squared                : 0.6352
#> Adjusted R-squared       : 0.6307
#> ANOVA test of R-squared  : F(6, 493) = 143.047, p < 0.001
#> 
#> = Test the highest order term =
#> The highest order term             : iv:mod
#> R-squared increase adding this term: 0.0012
#> F test of R-squared increase       : F(1, 493) = 1.5895, p = 0.208
#> 
#> Note:
#> - Estimates and their statistics are based on the data after
#>   mean-centering, scaling, or standardization.
#> - [CI Lower, CI Upper] are bootstrap percentile confidence intervals.
#> - Std. Error are not bootstrap SEs.
#> 

# Bootstrap percentile intervals, default when bootstrap was conduced

confint(lm_std_boot)
#>                    2.5 %      97.5 %
#> (Intercept) -0.019442340  0.12570734
#> iv           0.689068561  0.79335143
#> mod          0.197400624  0.31922399
#> v1          -0.096125083  0.01714287
#> cat1gp2     -0.270961023 -0.01233464
#> cat1gp3     -0.147733373  0.09914400
#> iv:mod      -0.004904705  0.08631912

# Force OLS confidence intervals

confint(lm_std_boot, type = "lm")
#>                   2.5 %      97.5 %
#> (Intercept) -0.03021975  0.15938347
#> iv           0.68362100  0.79114661
#> mod          0.20612513  0.31367234
#> v1          -0.08795872  0.01941694
#> cat1gp2     -0.27398880 -0.01602419
#> cat1gp3     -0.17462329  0.09572673
#> iv:mod      -0.01791790  0.08209267

# Use to_standardize as a shortcut
set.seed(89572)
lm_std_boot2 <- std_selected_boot(lm_raw, to_standardize = ~ .,
                                          nboot = 100)
# The results are the same
confint(lm_std_boot)
#>                    2.5 %      97.5 %
#> (Intercept) -0.019442340  0.12570734
#> iv           0.689068561  0.79335143
#> mod          0.197400624  0.31922399
#> v1          -0.096125083  0.01714287
#> cat1gp2     -0.270961023 -0.01233464
#> cat1gp3     -0.147733373  0.09914400
#> iv:mod      -0.004904705  0.08631912
confint(lm_std_boot2)
#>                    2.5 %      97.5 %
#> (Intercept) -0.019442340  0.12570734
#> iv           0.689068561  0.79335143
#> mod          0.197400624  0.31922399
#> v1          -0.096125083  0.01714287
#> cat1gp2     -0.270961023 -0.01233464
#> cat1gp3     -0.147733373  0.09914400
#> iv:mod      -0.004904705  0.08631912
all.equal(confint(lm_std_boot), confint(lm_std_boot2))
#> [1] TRUE