Skip to contents

A ten-variable dataset with 200 cases, with one influential case.

Usage

sem_dat2

Format

A data frame with 200 rows and 10 variables:

case_id

Case ID. Character.

x1

Indicator. Numeric.

x2

Indicator. Numeric.

x3

Indicator. Numeric.

x4

Indicator. Numeric.

x5

Indicator. Numeric.

x6

Indicator. Numeric.

x7

Indicator. Numeric.

x8

Indicator. Numeric.

x9

Indicator. Numeric.

Examples

library(lavaan)
data(sem_dat2)
mod <-
"
f1 =~  x1 + x2 + x3
f2 =~  x4 + x5 + x6
f3 =~  x7 + x8 + x9
f2 ~ a * f1
f3 ~ b * f2
ab := a * b
"
fit <- sem(mod, sem_dat2)
summary(fit)
#> lavaan 0.6.17 ended normally after 30 iterations
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                        20
#> 
#>   Number of observations                           100
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                                42.050
#>   Degrees of freedom                                25
#>   P-value (Chi-square)                           0.018
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Latent Variables:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   f1 =~                                               
#>     x1                1.000                           
#>     x2                1.533    0.412    3.722    0.000
#>     x3                1.382    0.364    3.799    0.000
#>   f2 =~                                               
#>     x4                1.000                           
#>     x5                1.341    0.241    5.563    0.000
#>     x6                1.302    0.230    5.654    0.000
#>   f3 =~                                               
#>     x7                1.000                           
#>     x8                1.652    0.309    5.346    0.000
#>     x9                1.067    0.209    5.104    0.000
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   f2 ~                                                
#>     f1         (a)    0.507    0.198    2.554    0.011
#>   f3 ~                                                
#>     f2         (b)    0.528    0.151    3.497    0.000
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .x1                0.660    0.109    6.041    0.000
#>    .x2                0.416    0.133    3.125    0.002
#>    .x3                0.564    0.127    4.448    0.000
#>    .x4                0.544    0.091    5.973    0.000
#>    .x5                0.478    0.103    4.628    0.000
#>    .x6                0.298    0.083    3.586    0.000
#>    .x7                0.484    0.085    5.690    0.000
#>    .x8                0.357    0.137    2.606    0.009
#>    .x9                0.515    0.092    5.572    0.000
#>     f1                0.230    0.102    2.260    0.024
#>    .f2                0.291    0.096    3.040    0.002
#>    .f3                0.232    0.077    3.000    0.003
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>     ab                0.268    0.118    2.270    0.023
#> 
inf_out <- influence_stat(fit)
gcd_plot(inf_out)