
Print a 'fit_measures_change' Class Object
Source:R/print_fit_measures_change.R
print.fit_measures_change.RdPrint the content of a 'fit_measures_change'-class object.
Usage
# S3 method for class 'fit_measures_change'
print(
x,
digits = 3,
first = 10,
sort_by = NULL,
decreasing = TRUE,
absolute = TRUE,
...
)Arguments
- x
An 'fit_measures_change'-class object.
- digits
The number of digits after the decimal. Default is 3.
- first
Numeric. If not
NULL, it prints only the first k cases, k equal tofirst. Default is 10.- sort_by
String. Default is
NULLand the output is not sorted. If set to a column names ofx, cases will sorted by this columns. The sorting is done on the absolute values ifabsoluteisTRUE, and in decreasing order ifdecreasingisTRUE. IfdecreaseisFALSE, the order is increasing. IfabsoluteisFALSE, the sorting is done on the raw values.- decreasing
Logical. Whether cases, if sorted, is on decreasing order. Default is
TRUE. Seesort_by.- absolute
Logical. Whether cases, if sorted, are sorted on absolute values. Default is
TRUE. Seesort_by.- ...
Other arguments. They will be ignored.
Details
All the functions on case influence
on fit measures, fit_measures_change()
and fit_measures_change_approx(), return
an fit_measures_change-class object. This method will print
the output, with the option to sort the cases.
Examples
library(lavaan)
# A path model
dat <- pa_dat
mod <-
"
m1 ~ a1 * iv1 + a2 * iv2
dv ~ b * m1
a1b := a1 * b
a2b := a2 * b
"
# Fit the model
fit <- lavaan::sem(mod, dat)
summary(fit)
#> lavaan 0.6-19 ended normally after 1 iteration
#>
#> Estimator ML
#> Optimization method NLMINB
#> Number of model parameters 5
#>
#> Number of observations 100
#>
#> Model Test User Model:
#>
#> Test statistic 6.711
#> Degrees of freedom 2
#> P-value (Chi-square) 0.035
#>
#> Parameter Estimates:
#>
#> Standard errors Standard
#> Information Expected
#> Information saturated (h1) model Structured
#>
#> Regressions:
#> Estimate Std.Err z-value P(>|z|)
#> m1 ~
#> iv1 (a1) 0.215 0.106 2.036 0.042
#> iv2 (a2) 0.522 0.099 5.253 0.000
#> dv ~
#> m1 (b) 0.517 0.106 4.895 0.000
#>
#> Variances:
#> Estimate Std.Err z-value P(>|z|)
#> .m1 0.903 0.128 7.071 0.000
#> .dv 1.321 0.187 7.071 0.000
#>
#> Defined Parameters:
#> Estimate Std.Err z-value P(>|z|)
#> a1b 0.111 0.059 1.880 0.060
#> a2b 0.270 0.075 3.581 0.000
#>
# Case influence
out <- fit_measures_change_approx(fit)
out
#>
#> -- Approximate Case Influence on Fit Measures --
#>
#> chisq cfi rmsea tli
#> 1 0.160 -0.002 0.002 -0.005
#> 2 -0.019 0.001 -0.001 0.003
#> 3 -0.389 0.008 -0.007 0.019
#> 4 -0.151 0.004 -0.003 0.009
#> 5 0.097 0.000 0.001 0.001
#> 6 0.116 -0.001 0.001 -0.003
#> 7 -0.596 0.013 -0.010 0.032
#> 8 0.119 0.002 0.001 0.005
#> 9 0.543 -0.012 0.008 -0.031
#> 10 0.703 -0.013 0.011 -0.033
#>
#> Note:
#> - Only the first 10 case(s) is/are displayed. Set ‘first’ to NULL to display all cases.
print(out, sort_by = "chisq", first = 5)
#>
#> -- Approximate Case Influence on Fit Measures --
#>
#> chisq cfi rmsea tli
#> 91 1.846 -0.035 0.033 -0.089
#> 25 1.621 -0.032 0.029 -0.080
#> 43 1.392 -0.031 0.024 -0.078
#> 17 -1.389 0.023 -0.022 0.058
#> 16 -1.283 0.016 -0.021 0.039
#>
#> Note:
#> - Only the first 5 case(s) is/are displayed. Set ‘first’ to NULL to display all cases.
#> - Cases sorted by chisq in decreasing order on absolute values.
fit_rerun <- lavaan_rerun(fit, parallel = FALSE,
to_rerun = c(2, 3, 5, 7))#'
#> The expected CPU time is 0.17 second(s).
#> Could be faster if run in parallel.
out <- fit_measures_change(fit_rerun)
out
#>
#> -- Case Influence on Fit Measures --
#>
#> chisq cfi rmsea tli
#> 2 -0.019 0.001 -0.001 0.003
#> 3 -0.417 0.008 -0.007 0.021
#> 5 0.097 0.000 0.001 0.001
#> 7 -0.631 0.014 -0.011 0.034
#>
#> Note:
#> - All stored cases are displayed.
print(out, sort_by = "chisq", first = 5)
#>
#> -- Case Influence on Fit Measures --
#>
#> chisq cfi rmsea tli
#> 7 -0.631 0.014 -0.011 0.034
#> 3 -0.417 0.008 -0.007 0.021
#> 5 0.097 0.000 0.001 0.001
#> 2 -0.019 0.001 -0.001 0.003
#>
#> Note:
#> - All stored cases are displayed.
#> - Cases sorted by chisq in decreasing order on absolute values.