Skip to contents

Functions for forming bootstrap confidence intervals for the standardized solution.

Usage

standardizedSolution_boot_ci(
  object,
  level = 0.95,
  type = "std.all",
  save_boot_est_std = TRUE,
  force_run = FALSE,
  boot_delta_ratio = FALSE,
  boot_ci_type = c("perc", "bc", "bca.simple"),
  ...
)

store_boot_est_std(object, type = "std.all", force_run = FALSE, ...)

get_boot_est_std(object)

Arguments

object

A 'lavaan'-class object, fitted with 'se = "boot"'.

level

The level of confidence of the confidence intervals. Default is .95.

type

The type of standard estimates. The same argument of lavaan::standardizedSolution(), and support all values supported by lavaan::standardizedSolution(). Default is "std.all".

save_boot_est_std

Whether the bootstrap estimates of the standardized solution are saved. If saved, they will be stored in the attribute boot_est_std. Default is TRUE.

force_run

If TRUE, will skip checks and run models without checking the estimates. For internal use. Default is FALSE.

boot_delta_ratio

The ratio of (a) the distance of the bootstrap confidence limit from the point estimate to (b) the distance of the delta-method limit from the point estimate. Default is FALSE.

boot_ci_type

The type of the bootstrapping confidence intervals. Support percentile confidence intervals ("perc", the default) and bias-corrected confidence intervals ("bc" or "bca.simple").

...

Other arguments to be passed to lavaan::standardizedSolution().

Value

The output of lavaan::standardizedSolution(), with bootstrap confidence intervals appended to the right, with class set to std_solution_boot (since version 0.1.8.4). It has a print method (print.std_solution_boot()) that can be used to print the standardized solution in a format similar to that of the printout of the summary() of a lavaan::lavaan object.

store_boot_est_std() returns the fit object set to object, with the bootstrap values of standardized solution in the bootstrap samples, as a matrix, stored in the slot external under the name shh_boot_est_std.

get_boot_est_std() returns a matrix of the stored bootstrap estimates of standardized solution. If none is stored, NULL is returned.

store_boot_est_std() is usually used with diagnostic functions such as plot_boot().

Details

standardizedSolution_boot_ci() receives a lavaan::lavaan object fitted with bootstrapping standard errors requested and forms the confidence intervals for the standardized solution.

It works by calling lavaan::standardizedSolution() with the bootstrap estimates of free parameters in each bootstrap sample to compute the standardized estimates in each sample.

A more reliable way is to use function like lavaan::bootstrapLavaan(). Nevertheless, this simple function is good enough for some simple scenarios, and does not require repeating the bootstrapping step.

store_boot_est_std() computes the standardized solution for each bootstrap sample, stores them the lavaan::lavaan object, and returns it. These estimates can be used by other functions, such as plot_boot(), to examine the estimates, without the need to repeat the computation.

get_boot_est_std() retrieves the bootstrap estimates of the standardized solution stored by store_boot_est_std().

Author

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448. Originally proposed in an issue at GitHub https://github.com/simsem/semTools/issues/101#issue-1021974657, inspired by a discussion at the Google group for lavaan https://groups.google.com/g/lavaan/c/qQBXSz5cd0o/m/R8YT5HxNAgAJ. boot::boot.ci() is used to form the percentile confidence intervals in this version.

Examples


library(lavaan)
set.seed(5478374)
n <- 50
x <- runif(n) - .5
m <- .40 * x + rnorm(n, 0, sqrt(1 - .40))
y <- .30 * m + rnorm(n, 0, sqrt(1 - .30))
dat <- data.frame(x = x, y = y, m = m)
model <-
'
m ~ a*x
y ~ b*m
ab := a*b
'

# Should set bootstrap to at least 2000 in real studies
fit <- sem(model, data = dat, fixed.x = FALSE,
           se = "boot",
           bootstrap = 100)
summary(fit)
#> lavaan 0.6-19 ended normally after 1 iteration
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                         5
#> 
#>   Number of observations                            50
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                                 0.020
#>   Degrees of freedom                                 1
#>   P-value (Chi-square)                           0.887
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                            Bootstrap
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   m ~                                                 
#>     x          (a)    0.569    0.325    1.749    0.080
#>   y ~                                                 
#>     m          (b)    0.219    0.146    1.495    0.135
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .m                 0.460    0.086    5.381    0.000
#>    .y                 0.570    0.110    5.178    0.000
#>     x                 0.078    0.012    6.782    0.000
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>     ab                0.125    0.126    0.992    0.321
#> 

std <- standardizedSolution_boot_ci(fit)
std
#>   lhs op rhs label est.std    se      z pvalue ci.lower ci.upper boot.ci.lower
#> 1   m  ~   x     a   0.229 0.127  1.800  0.072   -0.020    0.477        -0.041
#> 2   y  ~   m     b   0.198 0.118  1.684  0.092   -0.032    0.429        -0.024
#> 3   m ~~   m         0.948 0.058 16.325  0.000    0.834    1.062         0.793
#> 4   y ~~   y         0.961 0.047 20.595  0.000    0.869    1.052         0.785
#> 5   x ~~   x         1.000 0.000     NA     NA    1.000    1.000            NA
#> 6  ab := a*b    ab   0.045 0.040  1.130  0.259   -0.033    0.124        -0.007
#>   boot.ci.upper boot.se
#> 1         0.454   0.125
#> 2         0.464   0.115
#> 3         1.000   0.057
#> 4         1.000   0.052
#> 5            NA      NA
#> 6         0.164   0.043

# Print in a friendly format with only standardized solution
print(std, output = "text")
#> 
#> Standardized Estimates Only
#> 
#>   Standard errors                            Bootstrap
#>   Confidence interval                        Bootstrap
#>   Confidence Level                               95.0%
#>   Standardization Type                         std.all
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                Standardized  Std.Err ci.lower ci.upper
#>   m ~                                                 
#>     x          (a)    0.229    0.125   -0.041    0.454
#>   y ~                                                 
#>     m          (b)    0.198    0.115   -0.024    0.464
#> 
#> Variances:
#>                Standardized  Std.Err ci.lower ci.upper
#>    .m                 0.948    0.057    0.793    1.000
#>    .y                 0.961    0.052    0.785    1.000
#>     x                 1.000       NA       NA       NA
#> 
#> Defined Parameters:
#>                Standardized  Std.Err ci.lower ci.upper
#>     ab                0.045    0.043   -0.007    0.164
#> 

# Print in a friendly format with both unstandardized
# and standardized solution
print(std, output = "text", standardized_only = FALSE)
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                            Bootstrap
#>   Number of requested bootstrap draws              100
#>   Number of successful bootstrap draws             100
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>   m ~                                                                   
#>     x          (a)    0.569    0.325    1.749    0.080   -0.098    1.261
#>   y ~                                                                   
#>     m          (b)    0.219    0.146    1.495    0.135   -0.020    0.613
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>                                                    
#>     0.229       -0.041        0.454        0.125   
#>                                                    
#>     0.198       -0.024        0.464        0.115   
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>    .m                 0.460    0.086    5.381    0.000    0.279    0.623
#>    .y                 0.570    0.110    5.178    0.000    0.345    0.775
#>     x                 0.078    0.012    6.782    0.000    0.055    0.101
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>     0.948        0.793        1.000        0.057   
#>     0.961        0.785        1.000        0.052   
#>     1.000           NA           NA           NA   
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.125    0.126    0.992    0.321   -0.019    0.501
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>     0.045       -0.007        0.164        0.043   
#> 

# plot_boot() can be used to examine the bootstrap estimates
# of a parameter
plot_boot(std, param = "ab")



# store_boot_est_std() is usually used with plot_boot()
# First, store the bootstrap estimates of the
# standardized solution
fit_with_boot_std <- store_boot_est_std(fit)
# Second, plot the distribution of the bootstrap estimates of
# standardized 'ab'
plot_boot(fit_with_boot_std, "ab", standardized = TRUE)