Skip to contents

Print method for an 'std_solution_boot' object, which is the output of standardizedSolution_boot_ci().

Usage

# S3 method for class 'std_solution_boot'
print(x, ..., nd = 3, output = c("table", "text"), standardized_only = TRUE)

Arguments

x

Object of the class std_solution_boot.

...

Optional arguments to be passed to print() methods.

nd

The number of digits after the decimal place. Default is 3.

output

String. How the results are printed. Default is "table" and the results are printed in a table format similar to that of lavaan::standardizedSolution(). If "text", the results will be printed in a text format similar to the printout of the output of summary() of a 'lavaan'-class object.

standardized_only

Logical. If TRUE, the default, only the results for the standardized solution will be printed. If FALSE, then the standardized solution is printed alongside the unstandardized solution, as in the printout of the output of summary() of a 'lavaan'-class object.

Value

x is returned invisibly. Called for its side effect.

Details

The default format of the printout is that of lavaan::standardizedSolution(), which is compact but not easy to read. Users can request a format similar to that of the printout of the summary of a lavaan output by setting output to "text".

For the "text" format, users can also select whether only the standardized solution is printed (the default) or whether the standardized solution is appended to the right of the printout.

Examples

library(lavaan)
set.seed(5478374)
n <- 50
x <- runif(n) - .5
m <- .40 * x + rnorm(n, 0, sqrt(1 - .40))
y <- .30 * m + rnorm(n, 0, sqrt(1 - .30))
dat <- data.frame(x = x, y = y, m = m)
model <-
'
m ~ a*x
y ~ b*m
ab := a*b
'

# Should set bootstrap to at least 2000 in real studies
fit <- sem(model, data = dat, fixed.x = FALSE,
           se = "boot",
           bootstrap = 50)
std_out <- standardizedSolution_boot_ci(fit)
std_out
#>   lhs op rhs label est.std    se      z pvalue ci.lower ci.upper boot.ci.lower
#> 1   m  ~   x     a   0.229 0.117  1.955  0.051   -0.001    0.458        -0.025
#> 2   y  ~   m     b   0.198 0.121  1.644  0.100   -0.038    0.434        -0.005
#> 3   m ~~   m         0.948 0.053 17.729  0.000    0.843    1.053         0.786
#> 4   y ~~   y         0.961 0.048 20.110  0.000    0.867    1.054         0.758
#> 5   x ~~   x         1.000 0.000     NA     NA    1.000    1.000            NA
#> 6  ab := a*b    ab   0.045 0.037  1.240  0.215   -0.026    0.117        -0.006
#>   boot.ci.upper boot.se
#> 1         0.462   0.121
#> 2         0.492   0.112
#> 3         1.000   0.055
#> 4         0.999   0.056
#> 5            NA      NA
#> 6         0.151   0.038
print(std_out, output = "text")
#> 
#> Standardized Estimates Only
#> 
#>   Standard errors                            Bootstrap
#>   Confidence interval                        Bootstrap
#>   Confidence Level                               95.0%
#>   Standardization Type                         std.all
#>   Number of requested bootstrap draws               50
#>   Number of successful bootstrap draws              50
#> 
#> Regressions:
#>                Standardized  Std.Err ci.lower ci.upper
#>   m ~                                                 
#>     x          (a)    0.229    0.121   -0.025    0.462
#>   y ~                                                 
#>     m          (b)    0.198    0.112   -0.005    0.492
#> 
#> Variances:
#>                Standardized  Std.Err ci.lower ci.upper
#>    .m                 0.948    0.055    0.786    1.000
#>    .y                 0.961    0.056    0.758    0.999
#>     x                 1.000       NA       NA       NA
#> 
#> Defined Parameters:
#>                Standardized  Std.Err ci.lower ci.upper
#>     ab                0.045    0.038   -0.006    0.151
#> 
print(std_out, output = "text", standardized_only = FALSE)
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                            Bootstrap
#>   Number of requested bootstrap draws               50
#>   Number of successful bootstrap draws              50
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>   m ~                                                                   
#>     x          (a)    0.569    0.293    1.942    0.052   -0.056    1.165
#>   y ~                                                                   
#>     m          (b)    0.219    0.147    1.490    0.136   -0.002    0.725
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>                                                    
#>     0.229       -0.025        0.462        0.121   
#>                                                    
#>     0.198       -0.005        0.492        0.112   
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>    .m                 0.460    0.083    5.556    0.000    0.247    0.593
#>    .y                 0.570    0.109    5.229    0.000    0.341    0.792
#>     x                 0.078    0.013    5.924    0.000    0.052    0.102
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>     0.948        0.786        1.000        0.055   
#>     0.961        0.758        0.999        0.056   
#>     1.000           NA           NA           NA   
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.125    0.107    1.160    0.246   -0.019    0.440
#>  Standardized ci.std.lower ci.std.upper Std.Err.std
#>     0.045       -0.006        0.151        0.038   
#>