Skip to contents

A 16-variable dataset with 336 cases.

Usage

data_sem16

Format

A data frame with 336 rows and 16 variables:

x1

Indicator. Numeric.

x2

Indicator. Numeric.

x3

Indicator. Numeric.

x4

Indicator. Numeric.

x5

Indicator. Numeric.

x6

Indicator. Numeric.

x7

Indicator. Numeric.

x8

Indicator. Numeric.

x9

Indicator. Numeric.

x10

Indicator. Numeric.

x11

Indicator. Numeric.

x12

Indicator. Numeric.

x13

Indicator. Numeric.

x14

Indicator. Numeric.

x15

Indicator. Numeric.

x16

Indicator. Numeric.

group

Group with two values, "alpha" and "gamma". Character.

Examples

library(lavaan)
#> This is lavaan 0.6-18
#> lavaan is FREE software! Please report any bugs.
data(data_sem16)
mod <-
"
f1 =~ x1 + x2 + x3 + x4
f2 =~ x5 + x6 + x7 + x8
f3 =~ x9 + x10 + x11 + x12
f4 =~ x13 + x14 + x15 + x16
f3 ~ f2 + f1
f4 ~ f3
"
fit <- sem(mod, data_sem16)
summary(fit)
#> lavaan 0.6-18 ended normally after 53 iterations
#> 
#>   Estimator                                         ML
#>   Optimization method                           NLMINB
#>   Number of model parameters                        36
#> 
#>   Number of observations                           336
#> 
#> Model Test User Model:
#>                                                       
#>   Test statistic                                86.336
#>   Degrees of freedom                               100
#>   P-value (Chi-square)                           0.833
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Latent Variables:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   f1 =~                                               
#>     x1                1.000                           
#>     x2                0.888    0.200    4.446    0.000
#>     x3                1.049    0.216    4.863    0.000
#>     x4                0.582    0.168    3.470    0.001
#>   f2 =~                                               
#>     x5                1.000                           
#>     x6                1.202    0.328    3.667    0.000
#>     x7                0.792    0.240    3.294    0.001
#>     x8                0.407    0.188    2.168    0.030
#>   f3 =~                                               
#>     x9                1.000                           
#>     x10               0.854    0.135    6.343    0.000
#>     x11               0.920    0.139    6.634    0.000
#>     x12               0.814    0.133    6.114    0.000
#>   f4 =~                                               
#>     x13               1.000                           
#>     x14               1.077    0.215    5.008    0.000
#>     x15               0.475    0.143    3.319    0.001
#>     x16               0.939    0.193    4.857    0.000
#> 
#> Regressions:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   f3 ~                                                
#>     f2                0.455    0.208    2.185    0.029
#>     f1                0.555    0.174    3.195    0.001
#>   f4 ~                                                
#>     f3                0.561    0.115    4.887    0.000
#> 
#> Covariances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>   f1 ~~                                               
#>     f2                0.109    0.038    2.864    0.004
#> 
#> Variances:
#>                    Estimate  Std.Err  z-value  P(>|z|)
#>    .x1                0.999    0.099   10.059    0.000
#>    .x2                1.070    0.099   10.849    0.000
#>    .x3                0.689    0.083    8.334    0.000
#>    .x4                1.120    0.092   12.110    0.000
#>    .x5                0.965    0.098    9.832    0.000
#>    .x6                0.888    0.110    8.055    0.000
#>    .x7                1.037    0.093   11.178    0.000
#>    .x8                1.006    0.081   12.487    0.000
#>    .x9                0.961    0.097    9.862    0.000
#>    .x10               1.010    0.093   10.817    0.000
#>    .x11               0.941    0.091   10.283    0.000
#>    .x12               1.069    0.096   11.128    0.000
#>    .x13               1.107    0.111   10.006    0.000
#>    .x14               1.113    0.117    9.541    0.000
#>    .x15               1.073    0.087   12.292    0.000
#>    .x16               1.064    0.104   10.255    0.000
#>     f1                0.297    0.089    3.322    0.001
#>     f2                0.217    0.083    2.617    0.009
#>    .f3                0.300    0.077    3.881    0.000
#>    .f4                0.200    0.070    2.866    0.004
#>