Skip to contents

Prints the results of a semlbci object, the output of semlbci().

Usage

# S3 method for semlbci
print(
  x,
  digits = 3,
  annotation = TRUE,
  time = FALSE,
  verbose = FALSE,
  verbose_if_needed = TRUE,
  drop_no_lbci = TRUE,
  output = c("table", "text", "lavaan"),
  sem_out = NULL,
  lbci_only = drop_no_lbci,
  ratio_digits = 1,
  se = TRUE,
  zstat = TRUE,
  pvalue = TRUE,
  boot.ci.type = "perc",
  ...
)

Arguments

x

The output of semlbci().

digits

The number of digits after the decimal point. To be passed to formatC(). Default is 3.

annotation

If TRUE, print table notes. Default is TRUE.

time

If TRUE, print the time spent on each bound. Default is FALSE.

verbose

If TRUE, additional diagnostic information will always be printed. This argument overrides verbose_if_needed. Default is FALSE.

verbose_if_needed

If TRUE, additional diagnostic information will be printed only if necessary. If FALSE, additional diagnostic information will always be printed. Default is TRUE.

drop_no_lbci

If TRUE, parameters without LBCIs will be removed. Default is TRUE.

output

The type of printout. If "table", the default, the results will be printed in a table. If "text" or "lavaan", then the results will be printed in the lavaan style, as in the summary() method for the output of lavaan.

sem_out

If output is "text" or "lavaan", the original output of lavaan used in calling semlbci() needs to be supplied to this argument.

lbci_only

Used only if output is "text" or "lavaan". If TRUE, only the likelihood-based confidence intervals (LBCIs) will be printed. If FALSE, and LBCIs will be printed alongside the confidence intervals by lavaan. Its default value depend on the argument drop_no_lbci. If drop_no_lbci is TRUE, then lbci_only is TRUE by default. If drop_no_lbci is FALSE, then lbci_only is FALSE by default.

ratio_digits

The number of digits after the decimal points for the ratios of distance from the confidence limits to the point estimates. Default is 1.

se

Logical. To be passed to lavaan::parameterEstimates(). Whether standard error (S.E.) will be printed. Only applicable if output is "text" or "lavaan".

zstat

Logical. To be passed to lavaan::parameterEstimates(). Whether z-values will be printed. Only applicable if output is "text" or "lavaan".

pvalue

Logical. To be passed to lavaan::parameterEstimates(). Whether p-values will be printed. Only applicable if output is "text" or "lavaan".

boot.ci.type

Logical. To be passed to lavaan::parameterEstimates(). The type of bootstrap confidence intervals to be printed if bootstrapping confidence intervals available. Possible values are "norm", "basic", "perc", or "bca.simple". The default value is "perc". Refer to the help of lavaan::parameterEstimates() for further information. Only applicable if output is "text" or "lavaan".

...

Other arguments. They will be ignored.

Value

x is returned invisibly. Called for its side effect.

Details

Prints the results of semlbci() as a table.

See also

Examples


library(lavaan)
mod <-
"
m ~ a*x
y ~ b*m
ab := a * b
"
fit_med <- sem(mod, simple_med, fixed.x = FALSE)
p_table <- parameterTable(fit_med)
p_table
#>   id lhs op rhs user block group free ustart exo label plabel  start    est
#> 1  1   m  ~   x    1     1     1    1     NA   0     a   .p1.  1.676  1.676
#> 2  2   y  ~   m    1     1     1    2     NA   0     b   .p2.  0.535  0.535
#> 3  3   m ~~   m    0     1     1    3     NA   0         .p3. 34.710 34.710
#> 4  4   y ~~   y    0     1     1    4     NA   0         .p4. 40.119 40.119
#> 5  5   x ~~   x    0     1     1    5     NA   0         .p5.  0.935  0.935
#> 6  6  ab := a*b    1     0     0    0     NA   0    ab         0.000  0.897
#>      se
#> 1 0.431
#> 2 0.073
#> 3 3.471
#> 4 4.012
#> 5 0.094
#> 6 0.261
lbci_med <- semlbci(fit_med,
                    pars = c("ab :="))
lbci_med
#> 
#> Results:
#>   id lhs op rhs label   est lbci_lb lbci_ub    lb    ub cl_lb cl_ub
#> 6  6  ab := a*b    ab 0.897   0.427   1.464 0.385 1.409 0.950 0.950
#> 
#> Annotation:
#> * lbci_lb, lbci_ub: The lower and upper likelihood-based bounds.
#> * est: The point estimates from the original lavaan output.
#> * lb, ub: The original lower and upper bounds, extracted from the
#>     original lavaan output. Usually Wald CIs for free parameters and
#>     delta method CIs for user-defined parameters
#> * cl_lb, cl_ub: One minus the p-values of chi-square difference tests
#>     at the bounds. Should be close to the requested level of
#>     confidence, e.g., .95 for 95% confidence intervals.
#> 
#> Call:
#> semlbci(sem_out = fit_med, pars = c("ab :="))

print(lbci_med, verbose_if_needed = FALSE)
#> 
#> Results:
#>   id lhs op rhs label   est lbci_lb lbci_ub ok_l ok_u    lb    ub ratio_l
#> 6  6  ab := a*b    ab 0.897   0.427   1.464    0    0 0.385 1.409   0.919
#>   ratio_u check_l check_u cl_lb cl_ub
#> 6   1.108    TRUE    TRUE 0.950 0.950
#> 
#> Annotation:
#> * lbci_lb, lbci_ub: The lower and upper likelihood-based bounds.
#> * est: The point estimates from the original lavaan output.
#> * ok_l, ok_u: Whether the search encountered any problem. If no problem
#>     encountered, it is equal to 0. Any value other than 0 indicates
#>     something was wrong in the search. Try running 'semlbci()' again,
#>     setting 'semlbci_out' to this output, and set 'try_k_more_times' to
#>     a positive number greater than 2 (the default), e.g., 3 to 5.
#> * lb, ub: The original lower and upper bounds, extracted from the
#>     original lavaan output. Usually Wald CIs for free parameters and
#>     delta method CIs for user-defined parameters
#> * cl_lb, cl_ub: One minus the p-values of chi-square difference tests
#>     at the bounds. Should be close to the requested level of
#>     confidence, e.g., .95 for 95% confidence intervals.
#> * ratio_l, ratio_u: Ratio of a to b, a = Distance from the point
#>     estimate to the likelihood-based bound, b = Distance from the point
#>     estimate to the original bound. A bound should be interpreted with
#>     caution if the ratio is too large or too small, indicating a large
#>     difference between the original interval and the likelihood-based
#>     interval.
#> * check_l, check_u: Whether the final solution of a bound passed the
#>     post optimization check of lavaan by lavaan::lavInspect(fit,
#>     'post.check'), where fit is the final solution.
#> 
#> Call:
#> semlbci(sem_out = fit_med, pars = c("ab :="))

print(lbci_med, verbose = TRUE)
#> 
#> Results:
#>   id lhs op rhs label   est lbci_lb lbci_ub ok_l ok_u    lb    ub ratio_l
#> 6  6  ab := a*b    ab 0.897   0.427   1.464    0    0 0.385 1.409   0.919
#>   ratio_u check_l check_u cl_lb cl_ub
#> 6   1.108    TRUE    TRUE 0.950 0.950
#> 
#> Annotation:
#> * lbci_lb, lbci_ub: The lower and upper likelihood-based bounds.
#> * est: The point estimates from the original lavaan output.
#> * ok_l, ok_u: Whether the search encountered any problem. If no problem
#>     encountered, it is equal to 0. Any value other than 0 indicates
#>     something was wrong in the search. Try running 'semlbci()' again,
#>     setting 'semlbci_out' to this output, and set 'try_k_more_times' to
#>     a positive number greater than 2 (the default), e.g., 3 to 5.
#> * lb, ub: The original lower and upper bounds, extracted from the
#>     original lavaan output. Usually Wald CIs for free parameters and
#>     delta method CIs for user-defined parameters
#> * cl_lb, cl_ub: One minus the p-values of chi-square difference tests
#>     at the bounds. Should be close to the requested level of
#>     confidence, e.g., .95 for 95% confidence intervals.
#> * ratio_l, ratio_u: Ratio of a to b, a = Distance from the point
#>     estimate to the likelihood-based bound, b = Distance from the point
#>     estimate to the original bound. A bound should be interpreted with
#>     caution if the ratio is too large or too small, indicating a large
#>     difference between the original interval and the likelihood-based
#>     interval.
#> * check_l, check_u: Whether the final solution of a bound passed the
#>     post optimization check of lavaan by lavaan::lavInspect(fit,
#>     'post.check'), where fit is the final solution.
#> 
#> Call:
#> semlbci(sem_out = fit_med, pars = c("ab :="))

print(lbci_med, time = TRUE)
#> 
#> Results:
#>   id lhs op rhs label   est lbci_lb lbci_ub    lb    ub sec_l sec_u cl_lb cl_ub
#> 6  6  ab := a*b    ab 0.897   0.427   1.464 0.385 1.409 0.268 0.241 0.950 0.950
#> 
#> Annotation:
#> * lbci_lb, lbci_ub: The lower and upper likelihood-based bounds.
#> * est: The point estimates from the original lavaan output.
#> * lb, ub: The original lower and upper bounds, extracted from the
#>     original lavaan output. Usually Wald CIs for free parameters and
#>     delta method CIs for user-defined parameters
#> * cl_lb, cl_ub: One minus the p-values of chi-square difference tests
#>     at the bounds. Should be close to the requested level of
#>     confidence, e.g., .95 for 95% confidence intervals.
#> * sec_l, sec_u: The time (in seconds) used to search a bound.
#> 
#> Call:
#> semlbci(sem_out = fit_med, pars = c("ab :="))

print(lbci_med, annotation = FALSE)
#> 
#> Results:
#>   id lhs op rhs label   est lbci_lb lbci_ub    lb    ub cl_lb cl_ub
#> 6  6  ab := a*b    ab 0.897   0.427   1.464 0.385 1.409 0.950 0.950

print(lbci_med, digits = 4)
#> 
#> Results:
#>   id lhs op rhs label    est lbci_lb lbci_ub     lb     ub  cl_lb  cl_ub
#> 6  6  ab := a*b    ab 0.8969  0.4265  1.4640 0.3849 1.4088 0.9500 0.9500
#> 
#> Annotation:
#> * lbci_lb, lbci_ub: The lower and upper likelihood-based bounds.
#> * est: The point estimates from the original lavaan output.
#> * lb, ub: The original lower and upper bounds, extracted from the
#>     original lavaan output. Usually Wald CIs for free parameters and
#>     delta method CIs for user-defined parameters
#> * cl_lb, cl_ub: One minus the p-values of chi-square difference tests
#>     at the bounds. Should be close to the requested level of
#>     confidence, e.g., .95 for 95% confidence intervals.
#> 
#> Call:
#> semlbci(sem_out = fit_med, pars = c("ab :="))

# Text output

print(lbci_med, output = "lavaan", sem_out = fit_med)
#> Likelihood-Based CI Notes:
#> 
#> - lb.lower, lb.upper: The lower and upper likelihood-based confidence
#>                       bounds.
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) lb.lower lb.upper
#>     ab                0.897    0.261    3.434    0.001    0.427    1.464
#> 

print(lbci_med, output = "lavaan", sem_out = fit_med, lbci_only = FALSE)
#> Likelihood-Based CI Notes:
#> 
#> - lb.lower, lb.upper: The lower and upper likelihood-based confidence
#>                       bounds.
#> 
#> Parameter Estimates:
#> 
#>   Standard errors                             Standard
#>   Information                                 Expected
#>   Information saturated (h1) model          Structured
#> 
#> Defined Parameters:
#>                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
#>     ab                0.897    0.261    3.434    0.001    0.385    1.409
#>  lb.lower lb.upper
#>     0.427    1.464
#> 

print(lbci_med, output = "lavaan", sem_out = fit_med, lbci_only = FALSE,
      se = FALSE, zstat = FALSE, pvalue = FALSE)
#> Likelihood-Based CI Notes:
#> 
#> - lb.lower, lb.upper: The lower and upper likelihood-based confidence
#>                       bounds.
#> 
#> Parameter Estimates:
#> 
#> 
#> Defined Parameters:
#>                    Estimate lb.lower lb.upper
#>     ab                0.897    0.427    1.464
#>