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Abstract 

There are three common types of confidence interval (CI) in structural equation modeling 

(SEM): Wald-type CI, bootstrapping CI, and likelihood-based CI (LBCI). LBCI has the 

following advantages: 1) it has better coverage probabilities and Type I error rate compared 

to Wald-type CI when the sample size is finite; 2) it correctly tests the null hypothesis of a 

parameter based on likelihood ratio chi-square difference test; 3) it is less computationally 

intensive than bootstrapping CI; and 4) it is invariant to transformations. However, LBCI is 

not available in many popular SEM software packages. We developed an R package, semlbci, 

for forming LBCI for parameters in models fitted by lavaan, a popular open-source SEM 

package, such that researchers have more options in forming CIs for parameters in SEM. The 

package supports both unstandardized and standardized estimates, derived parameters such as 

indirect effect, multisample models, and the robust LBCI proposed by Falk (2018). 

Keywords: likelihood-based confidence interval, structural equation modeling, 

confidence interval, robust method 
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semlbci: An R package for Forming Likelihood-Based Confidence Intervals for 

Parameter Estimates, Correlations, Indirect Effects, and Other Derived Parameters 

Forming confidence intervals (CIs) is an important task in structural equation 

modeling (SEM). In addition to providing an interval estimate of a parameter that takes into 

account the sampling variation, it can also be used to test a hypothesis when a z-test or a t-test 

is not available, such as testing the indirect effect in a mediation model. The most popular 

type of CI is the Wald-type CI (WCI, Pek & Wu, 2015). Another popular type of CI is the 

bootstrapping CI (BCI, Efron & Hastie, 2016), which has several variants that differ in the 

resampling method (e.g., nonparametric bootstrapping, parametric bootstrapping) and the CI 

formation procedure (e.g., percentile CI and bias-corrected accelerated CI). They are 

available in most commonly used SEM software packages. The third type of CI, likelihood-

based confidence interval (LBCI), is less popular in social sciences and available only in a 

limited number of SEM software packages (e.g., OpenMx, Neale, Hunter, Pritikin, Zahery, 

Brick, Kirkpatrick, Estabrook, Bates, Maes, & Boker, 2016), despite its advantages over the 

other two types in some situations. To give researchers the option to use LBCI, we developed 

semlbci, an R package, for forming LBCIs for parameters in models fitted by lavaan 

(Rosseel, 2012), a popular R package for SEM. We first briefly introduce LBCI, including its 

advantages and disadvantages. We then illustrate how to use semlbci to form LBCIs for 

parameters and functions of parameters, such as indirect effects and standardized coefficients 

(e.g., correlations). Last, we discuss current limitations and possible future directions for the 

package. 

A Brief Introduction to CI, LBCI, WCI, and BCI 

To illustrate the advantages of LBCI over WCI, we first present a brief introduction to 

CI in general. We then present two aspects of LBCI’s performance that highlight its 

substantial difference from WCI. LBCI, WCI, and BCI have been discussed and compared in 
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detail by others in this journal (e.g., Falk & Biesanz, 2015; Pritikin, Rappaport, & Neale, 

2017; Falk, 2018). We will only give a brief introduction to them, focusing on the test 

inversion approach presented below when comparing LBCI and WCI. Interested readers can 

consult Falk (2018) for a more comprehensive introduction to WCI and LBCI in SEM, and 

Meeker and Escobar (1995) for a general introduction of LBCI in other contexts. 

Confidence Interval as Inverting a Test 

For reasons to be presented later, we first use a sample mean to illustrate how CI is 

formed and used. Suppose a sample of size n on a variable x is drawn from a population: 

{𝑥1, 𝑥2, … , 𝑥𝑖, … , 𝑥𝑛}, 𝑥𝑖 the value of the ith case, 𝑥̅ the sample mean, 𝑠𝑥 the sample standard 

deviation. The standard error (SE) of 𝑥̅, 𝑠𝑥̅, is 𝑠𝑥/√𝑛. Assuming the population distribution of 

x is normal, to test whether 𝑥̅ is significantly different from 𝑥0, with level of significance α, 

two-tailed, the critical t, 𝑡0 = 𝑡𝑛−1,1−𝛼/2, is computed, 𝑛 − 1 the degrees of freedom (df) and 

1 − 𝛼/2 the area to the left of 𝑡0. If the sample t statistics, 𝑡𝑥̅ = |𝑥̅ − 𝑥0|/𝑠𝑥̅, is greater than 

𝑡0, 𝑥̅ is declared to be significantly different from 𝑥0 at α (two-tailed). 

Instead of specifying 𝑥0, we can also find the interval of nonsignificance by inverting 

the test (Casella & Berger, 2001): [𝑥̅ ± 𝑡0𝑠𝑥̅]. All values on the left of the interval are less 

than 𝑥̅ − 𝑡0𝑠𝑥̅, and all values on the right of the interval are greater than 𝑥̅ + 𝑡0𝑠𝑥̅. 

Equivalently, 𝑥̅ is significantly different from all values outside the interval. If 𝑥̅ is tested 

against 𝑥̅ ± 𝑡0𝑠𝑥̅, the two bounds of the interval, the two-tailed p-values of the t-test are 

exactly 𝛼. If tested against values outside the interval, the two-tailed p-values are less than 𝛼. 

If tested against values inside the interval, the two-tailed p-values are greater than 𝛼. That is, 

𝑥̅ is not significantly different from all values in this interval at 𝛼, two-tailed. This interval is 

called the 100(1 − 𝛼)% confidence interval (CI) of 𝑥̅ based on the t-test. 

Using the Confidence Intervals: Hypothesis Testing and Interval Estimation 

There are two common uses of CI. If a CI is formed by inverting a known statistical 
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test, then the CI can be used for hypothesis testing based on this test, as shown above. Even if 

it is formed by methods like bootstrapping, it is still usually used this way. It is probably the 

most popular method for testing an indirect effect (e.g., Hayes, 2022), by checking whether 

zero is outside a 100(1 − 𝛼)% CI. If yes, an indirect effect is significantly different from 

zero at 𝛼 (two-tailed). Nevertheless, as shown above, the CI also shows the range of values 

from which an estimate is not significantly different at 𝛼 (two-tailed), as long as the test is 

valid for this range of values. Using CI to test against zero is only a special case. If used this 

way, then the validity of a CI can be evaluated by checking the p-values of an estimate when 

tested against the two bounds of the interval. For a 100(1 − 𝛼)% CI, the two-tailed p-values 

should be equal to 𝛼, which is necessarily the case for the t-based CI for sample means and 

CIs formed in a similar way. 

Another common use of CI is as an interval estimate of a parameter. A common 

frequentist interpretation of the probability that a sample 100(1 − α)% CI includes the 

population value of the parameter being estimated is 100(1 − α)%. Note that, for any 

particular sample CI, it either includes or excludes the population value. Therefore, in 

assessing the validity of a CI procedure, one common way is to estimate its coverage 

probabilities across situations and see how close they are to the expected value. However, a 

CI can have the expected coverage probability but cannot be used for doing a two-tailed test. 

For example, suppose we form the CI of a sample mean this way: [𝑥̅ − 𝑡(𝑛,1−α/2−.02)𝑠𝑥̅, 𝑥̅ −

𝑡(𝑛,1−α/2+.02)𝑠𝑥̅]. This confidence interval is asymmetric about 𝑥̅, with the lower bound 

farther away from the sample mean and the upper bound closer to the sample mean, having 

different Type I error rates for the two “tails.” However, its coverage probability of the 

population value is still 95%. A CI formed this way is valid in the coverage probability sense 

but not valid in the hypothesis testing sense (unless different weights are placed on the tails, 

or the test is one-tailed). In the present paper, we focus on using CI as a tool to identify 
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values from which a sample estimate is significantly different. 

Likelihood Ratio Test and LBCI 

In SEM, there are several ways to test a parameter estimate. Suppose an arbitrary 

structural equation model, 𝑀1, with q parameters, 𝜽, is fitted to the data by maximum 

likelihood (ML), with estimates 𝜽̂. To test whether the estimate of a parameter, 𝜃𝑗 , is 

significantly different from zero at α = .05 (two-tailed), a likelihood ratio test (LR test, a χ2 

test with df = 1) can be conducted by comparing 𝑀1 to a more restricted model, 𝑀0, with 𝜃𝑗  

fixed to zero. This test is also called the χ2 difference test because it is a general procedure to 

test the difference between two models, one nested within another, in goodness of fit. 

Although not common, the LR test can be used to test an estimate against other values. 

Moreover, the LR test can also be used to compare two models, one with an equality 

constraint imposed (Bollen, 1989). Therefore, the LR test can also be used to test functions of 

parameters, such as standardized regression coefficients, correlations, and indirect effects 

(e.g., Cheung, 2009a, 2009b; Falk, 2018; Falk & Biesanz, 2015; Pesigan & Cheung, 2020), 

comparing 𝑀1 to 𝑀0, with the function of relevant parameters (e.g., an indirect effect) fixed 

to zero in 𝑀0. 

If the LR test is appropriate, then a CI of a parameter can be formed by inverting the 

LR test. The CI formed this way is called likelihood-based CI (LBCI, also called profile 

likelihood CI in SEM, see Pritikin et al., 2017). A 100(1 − α)% LBCI is formed by inverting 

the LR test to find two values, 𝜃𝑗𝐿 and 𝜃𝑗𝑈, such that the LR tests when fixing the parameter 

to these two values have p-values equal to α. 

The LBCI has the advantage that it can be interpreted as in the simple case of t-based 

CI for a sample mean: Values inside the interval are values from which 𝜃𝑗  is not significantly 

different based on the LR test, while 𝜃𝑗  is significantly different from all values outside the 

interval. If used to test against zero, the LBCI also tells exactly what a researcher wants to 
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know when reading the p-value of an estimate: Whether the χ2 difference test is significant if 

a path or covariance is "removed" (the parameter fixed to zero). 

Wald CI and Delta-Method CI 

Although LBCI is easy to interpret, two other CIs, Wald CI and delta-method CI, are 

much more popular in the applications of SEM. Following Pek and Wu (2015), we use Wald-

Type CI (WCI) to refer to both Wald CI and delta-method CI. Most popular SEM programs 

report WCIs for parameters and derived parameters (functions of parameters), such as 

standardized coefficients and correlations. Using the example above, a 95% Wald CI is 

formed using the standard error of 𝜃𝑗 , 𝑠𝜃̂𝑗 , and the value in the standard normal distribution 

with (1 − α/2) of the area to the left, 1.96: [𝜃𝑗 ± 1.96𝑠𝜃̂𝑗]. A 95% delta-method CI for a 

derived parameter, ℎ(𝜃∗), 𝜃∗ being a subset of 𝜃 (or 𝜃 if all parameters are involved), is 

formed by [ℎ(𝜽̂∗) ± 1.96𝑠ℎ], where 𝑠ℎ = √ℎ̇(𝜽̂∗)𝛴̂𝜽∗ℎ̇(𝜽̂∗)′  is the approximated standard 

error of ℎ(𝜽̂∗), 𝛴̂𝜽∗ is the estimated sampling variances and covariances of 𝜽̂∗, and ℎ̇(𝜽∗) =

𝜕ℎ(𝜽∗)/𝜕𝜽∗
′  (Rao, 1973). Wald CI and delta-method CI are also formed by inverting a test. 

Wald CI inverts the Wald test (Wald, 1943), which tests whether an estimate is significantly 

different from 𝜃0 using 𝑧𝜃̂𝑗 = |𝜃𝑗 − 𝜃0|/𝑠𝜃̂𝑗 and the critical value from a standard normal 

distribution (1.96 when α = .05). The case is the same for the delta-method CI, using 𝑧ℎ(𝜃̂∗) =

|ℎ(𝜃∗) − ℎ0|/𝑠ℎ. Therefore, like LBCI, WCI is also formed by inverting a test, and so the 

interval are values from which a parameter is not significantly different, although the tests 

being inverted are different. 

Comparing LBCI and WCI in a Real Data Set 

Although WCI and LBCI are asymptotically equivalent (Cox & Hinkley, 1974), they 

can be different in finite samples, sometimes substantially. We can assess the similarity 

between a Wald CI and an LBCI without actually finding the LBCI, but by checking the LR 
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test p-values when fixing a parameter to one of its Wald CI bounds. We use the classic data 

set by Holzinger and Swineford (provided in lavaan) as an example, fitting a three-factor 

model on the nine variables, x1 to x9 (Figure 1) using ML estimation (source file 

cfa_pvalues.Rmd)1: 

Table 1 shows the LR test p-values when a parameter is fixed to a bound of its 95% 

Wald CI. The columns p-values are the LR test p-values comparing the fitted model to a 

model with a parameter fixed to the lower bound or upper bound of its 95% Wald CIs. None 

of the Wald CI bounds have p-values equal to .05, that is, none of the intervals coincide with 

the corresponding LBCIs if they are formed. Some of the p-values are substantially higher or 

lower than .05. For example, the upper bound of the factor loadings of x9 on speed ability is 

1.378, with p = .229. This interval is too narrow and optimistic, excluding a wide range of 

values above 1.378 from which the estimate 1.082 is not significantly different based on the 

LR test. In sum, although formed by inverting the Wald test, the Wald CI cannot be 

interpreted as such if we use LR test p-value as the criterion. 

To illustrate why a delta-method CI may also lead to incorrect conclusions on the LR 

test, we used as an example the data set from Tal-Or, Cohen, Tsfati, and Gunther (2010, 

available in the psych package),2 which is a popular dataset for illustrating simple mediation 

(e.g., Hayes, 2022). They conducted an experiment to investigate whether a treatment would 

influence reaction to a news story through presumed media influence (PMI). A simple 

mediation model is fitted, with condition (where the stimulus was said to be presented in a 

newspaper: front page = 1, interior page = 0) as the independent variable, PMI as the 

mediator, and reaction as the outcome variable. The indirect effect (ab) is the product of the 

path coefficient from condition to presumed media influence (a) and that from PMI to 

 
1 All source and output files are available at the OSF project for this manuscript:  https://osf.io/b9a2p/.   
2 We thank the corresponding author for the permission to use this dataset for illustration. 

https://osf.io/b9a2p/
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reaction (b). The ML estimate is 0.241, and the 95% delta-method CI (default of lavaan) is 

-.007 to .490. The indirect effect is not significantly different from zero by this CI. However, 

if this model is compared to a model with the indirect effect fixed to zero, the p-value of the 

LR test is .043. That is, the indirect effect is actually significantly different from zero using 

the LR test (source file Tal_Or_pvalue.Rmd). 

In sum, WCI can yield conclusions different from those by the LR test. A WCI can 

include or exclude values from which the estimate is not significantly based on the LR test, 

and the significant test conclusions by WCI and LR test can be different. 

Why LBCI Should Be Used (If Available) Instead of WCI 

WCI as an Approximation of LBCI 

One may argue that Wald CI is a correct CI if we trust the Wald test because it is 

formed by inverting the Wald test. If we test an estimate against the bounds of a 95% Wald 

CI, then the Wald test p-values are necessarily .05. However, Pawitan (2001) argued that, if 

LBCI and Wald CI are not similar, as in the examples above, LBCI is preferred, partly 

because Wald CI and delta-method CI can be considered approximations of the LBCI. 

We use the Holzinger-Swineford data set for illustration again. Suppose we want to 

form the CI for the covariance between visual ability and speed ability, σ̂𝑉𝑆. When estimated 

by ML, the log-likelihood function, log 𝐿(𝜽), is maximized when evaluated at 𝜽̂, the ML 

estimates (MLEs) of all free parameters, and σ̂𝑉𝑆 = 0.262 (Table 1). Following the 

suggestion by Pawitan (2001), we scale the log-likelihood to be zero at MLEs when 

visualizing the log-likelihood. We then plot the log-likelihood by fixing σ̂𝑉𝑆 to values near its 

MLE and maximize the log-likelihood with respect to other parameters (Figure 2), 

log 𝐿(σ𝑉𝑆) = log 𝐿(σ𝑉𝑆, 𝜽𝑞), where 𝜽𝑞 are other parameters in 𝜽 (Pawitan, 2001). This is 

called the log profile likelihood of σ𝑉𝑆 (source file cfa.Rmd). 

The solid blue line is the plot of the log profile likelihood of σ𝑉𝑆 from 0.162 to 0.382, 
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peaking at 0.262 which is the MLE of σ𝑉𝑆. The decrease in log profile likelihood is 1.92 at 

these two points, half of 3.84, the critical value of χ2 with df = 1. The LR test statistic when 

testing σ𝑉𝑆 against an arbitrary value σ𝑉𝑆
′  is given by 2[log 𝐿(𝜽̂) −log 𝐿(σ𝑉𝑆

′ ) ]. Therefore, 

the p-values of the LR tests fixing σ𝑉𝑆 to 0.162 or 0.382 is .05. In other words, the estimated 

covariance of 0.262 is just significant from 0.162 and 0.382, not significantly different from 

0.162 to 0.382, and significantly different from values less than 0.162 or greater than 0.382. 

This interval is the 95% LBCI of σ̂𝑉𝑆. Note that the log profile likelihood is curved and 

slightly asymmetric for σ𝑉𝑆 in this example.  

Instead of fitting the model many times to plot the log profile likelihood in a range of 

values, a quadratic approximation of the log profile likelihood of σ𝑉𝑆 can also be formed by 

log 𝐿(σ𝑉𝑆)  ≈ log 𝐿(𝜽̂) − 0.5(𝑠σ̂𝑉𝑆
2 )

−1
(σ𝑉𝑆 − σ̂𝑉𝑆)

2  using Taylor’s expansion, where 𝑠σ̂𝑉𝑆
2  is 

the diagonal element corresponding to σ𝑉𝑆 in the inverse of Fisher information matrix 𝐼(𝛉̂), 

and 𝑠σ̂𝑉𝑆 is the standard error of σ̂𝑉𝑆 (Pawitan, 2001). In practice, whether the expected or 

observed information is used depends on the data and other factors (e.g., whether missing 

data is present or not, see Savalei, 2010). In the above example, with complete data, the 

expected information matrix is used, the default option in lavaan. The LR test is conducted 

by using 2[log 𝐿(𝜽̂)  − log 𝐿(σ𝑉𝑆
′ )] and a 1-df χ2 distribution. Therefore, (𝑠σ̂𝑉𝑆

2 )
−1
(σ𝑉𝑆 −

σ̂𝑉𝑆)
2 is the approximated test statistic, and the test is equivalent to finding the p-value of 

|σ̂𝑉𝑆 − σ𝑉𝑆|/𝑠σ̂𝑉𝑆 in a standard normal distribution, which is the Wald test used to form the 

Wald CI. The dotted red line in Figure 2 is a plot of this quadratic approximation, and the 

interval at log profile likelihood = -1.92, 0.152 to 0.373, is the Wald CI of σ̂𝑉𝑆. 

Numerically, the two intervals may look similar. However, their differences are in the 

p-values of the bounds. The LR test p-values of the LBCI is .05 at its bounds because it is 

formed by inverting the LR test. This is not necessarily the case for Wald CI because Wald 
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test is an approximation of the LR test. In this example, the Wald CI is shifted to the left. 

Based on the LR test, the sample estimate σ̂𝑉𝑆 is not significantly different from some values 

within the left end of the Wald CI (from 0.152 to 0.162) and some values outside the right 

end of it (from 0.373 to 0.382). Different from how we want a CI behaves, we cannot say that 

σ̂𝑉𝑆 is not significantly from all values within the Wald CI based on the LR test. Although the 

conclusion is the same if we only want to test whether σ̂𝑉𝑆 is significantly different from 

zero, when one bound of a Wald CI is close to zero, which is not uncommon, LBCI and Wald 

CI may lead to different conclusions because one interval includes zero while the other does 

not. In this case, LBCI, if available, should be used to test a null hypothesis.  

The same phenomenon applies to delta-method CI because it can also be treated as an 

approximation of the log profile likelihood when a function of parameters, such as a 

correlation, is fixed to a value (Pawitan, 2001). The log profile likelihood of the indirect 

effect and its quadratic approximation in Tar-Or et al. (2010) are plotted in Figure 3 (source 

file Tal_Or_no_boot.Rmd). The asymmetry of the log profile likelihood is more apparent, 

with the LBCI wider but did not include zero, showing that the delta-method CI, the interval 

defined by the blue dotted line, may not approximate the log profile likelihood well, leading 

to a conclusion different from that by the LR test and LBCI. 

WCI is Not Invariant to Transformation and Reparameterization, while LBCI is 

Another problem with WCI and Wald test is their dependence on transformation and 

reparameterization (Gregory & Veall, 1985). For example, Gonzalez and Griffin (2001) 

showed that the Wald test p-value of a factor covariance may depend on which loading of the 

indicators of a factor is fixed to one. Different ways to formulate a hypothesis can result in 

different p-values for the Wald test, and consequently different WCI because it is formed by 

inverting the Wald test. The LR test and LBCI are invariant to reparameterization and 

transformation (Pawitan, 2001). 
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Comparing LBCI with BCI 

Although not used as the default CI, a popular CI method for some parameters, such 

as derived parameters like indirect effects presented above, is bootstrapping CI (BCI). There 

are many variants, and we focus on nonparametric percentile bootstrapping (NPCI), a 

common method for forming CI for an indirect effect (e.g., in the PROCESS macro by 

Hayes, 2022). In NPCI for SEM, for a sample of size n, B bootstrap samples of the same size 

are drawn with replacement. The original model is then fitted to each of the bootstrap 

samples, and the parameter of concern is estimated in each bootstrap sample, yielding B 

bootstrap estimates. The 100(1 − 𝛼)% NPCI is formed by finding the 100(𝛼/2)th and 

100(1 − 𝛼/2)th percentiles of the bootstrap estimates. NPCI is usually used when (a) the 

distributional assumption of the estimators (e.g., multivariate normality for ML) may be 

violated, or (b) the sampling distribution of a parameter is unknown or complicated. 

NPCI is similar to LBCI because both methods do not assume symmetry in the 

uncertainty about the point estimate, making them appropriate choices for derived parameters 

such as indirect effect and standardized parameters like correlations. NPCI has the added 

advantage that it makes no distributional assumption on the raw data. LBCI is valid only if 

the likelihood function is not misspecified, and so multivariate normality is still needed to use 

LBCI for ML estimates (but see Falk, 2018, on a robust version of LBCI, discussed later). 

Despite the advantages of NPCI over LBCI, it has two disadvantages. First, it is 

computationally intensive, requiring fitting a model a large number of times (B must be large, 

at least 2000 while 5000 is common). Although repeated model fitting is also required in 

forming LBCI, as implied in the plot of log profile likelihood above, it usually requires much 

less computational time. Second, NPCI is a resampling method and so the CI will change as 

the set of bootstrap samples changes, adding one more level of sampling variability. This 

variability can be decreased but at the cost of increasing B. Moreover, if a bound is close to 
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zero, a large B is required to achieve results that depend little on the set of bootstrap samples. 

In the Tal-Or et al. example above, we formed NPCI for the indirect effect 100 times, with B 

= 5000, 10000, and 20000 (source file Tal_Or_boot.Rmd). When B = 5000, 9% of the NPCIs 

included 0. When B increased to 10000, 3% of the NPCIs included 0. All NPCIs agree (do 

not include 0) when B is 20000. In practice, researchers may stop at B = 5000, not being 

aware that a larger number of B is needed. LBCI, though without a closed-form solution, is 

fixed and there is no additional source of uncertainty due to resampling, unlike NPCI, , other 

than what is due to optimization. 

Robust WCI and Robust LBCI 

When the assumption of multivariate normality is not tenable, several robust versions 

of WCI (R-WCI) are available. The principle is similar in all common approaches: the 

estimated variance-covariance matrix is adjusted for potential deviation from multivariate 

normality and the adjusted variance-covariance matrix is used to form the WCI (see Savalei, 

2014, for an overview). This approach cannot be used for LBCI because it is not computed 

from the variance-covariance matrix. Falk (2018) proposed a simple approach to from a 

robust LBCI. Because LBCI is formed by inverting the LR test, robust LBCI can be formed 

by inverting the scaled 𝜒2 test developed by Satorra (2000). This test is readily available in 

lavaan through lavTestLRTs() with method set to "satorra.2000". Therefore, the 

100(1 − α)% robust LBCI of a parameter is found by finding the two values that will result 

in Satorra-2000 LR test p-values equal to 𝛼 if the parameter is fixed to one of these two 

values. The procedure is the same for derived parameters such as standardized coefficients 

and indirect effects. Falk empirically compared robust LBCI with other methods across a 

wide variety of conditions and found that robust LBCI is a viable CI procedure when 

violation of multivariate normality is suspected. In semlbci, this approach is adopted to form 

a robust LBCI (details on the implementation presented later). 
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Why LBCI is Rarely Used in SEM in Some Disciplines 

We believe there are three major reasons that LBCI is rarely used in the applications 

of SEM in some disciplines. First, researchers may believe that LBCI and WCI are similar. 

We demonstrated that this is not the case even in a popular dataset. Second, when WCI is not 

suitable, researchers may resort to bootstrapping CI. Bootstrapping CI indeed performed well 

in many situations (e.g., Falk, 2018). However, LBCI is also a viable alternative in these 

situations, especially when the computational cost required to reduce the resampling error in 

bootstrapping CI is too great to use it repeatedly except in the final stage of a series of 

analyses. The third major reason is the lack of tools. LBCI is not available in most of the 

popular SEM software packages. OpenMx (Neale et al., 2016) has good support for the LBCI, 

and users can request them for virtually any parameters. However, at the time of writing, 

Amos (Arbuckle, 2021), lavaan (Rosseel, 2012), and Mplus (Muthén & Muthén, 2017) do not 

support the LBCI. Users need to find them manually (e.g., Asparouhov, 2020). To overcome 

this problem and let more researchers have the option to use LBCI, we developed semlbci, an 

R package for forming LBCI for parameters in a model fitted by SEM in lavaan. We first 

illustrate how to use semlbci which is relevant to most users, and then discuss major technical 

details on the implementation for interested readers. The package can be downloaded from 

the OSF page for this manuscript (https://osf.io/b9a2p/) or installed from GitHub 

(https://sfcheung.github.io/semlbci/).  

How to Use semlbci to Form LBCI 

Workflow 

The package was designed to allow users to form the LBCI for model parameters 

without learning a new package to do SEM. It currently supports lavaan, one of the most 

popular SEM packages in R (R Core Team, 2022). The workflow is simple: (1) Researchers 

fit their models, as usual, using lavaan, and (2) pass the fit object from lavaan to semlbci and 

https://osf.io/b9a2p/
https://sfcheung.github.io/semlbci/
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specify parameters for which LBCI are to be formed. The output is similar to the output of 

parameterEstimates() for original estimates and standardizedSolution() for standardized 

estimates, to reduce the need to learn reading a new output format. In the following sections, 

we illustrate how semlbci can be used in different scenarios. The source files and PDF files of 

the output of all the illustrations can be found in the folder examples of the OSF page 

(https://osf.io/b9a2p/files/osfstorage). 

Free Parameters and Derived Parameters in a Simple Mediation Model 

A simple mediation model is fitted to the dataset simple_med, included in semlbci: 

fit <- sem(model = mod, data = simple_med, fixed.x = FALSE) 

This is an excerpt of the original parameter estimates results from lavaan: 

lhs op rhs label    est    se      z pvalue ci.lower ci.upper 

  m  ~   x     a  1.676 0.431  3.891  0.000    0.832    2.520 

  y  ~   m     b  0.470 0.074  6.354  0.000    0.325    0.616 

  y  ~   x        1.540 0.468  3.291  0.001    0.623    2.457 

 ab := a*b    ab  0.789 0.238  3.318  0.001    0.323    1.254 

To form the LBCIs for all free parameters and the indirect effect ab, call the function 

semlbci() (source file med.Rmd): 

fit_lbci <- semlbci(fit) 

By default, LBCIs are formed for all free parameters and derived parameters, except 

for variances and error variances because these CIs are rarely reported, and researchers rarely 

test whether they are significant or not. To include them, add remove_variances = FALSE. 

The output is a semlbci-class object. This is an excerpt of the default printout: 

lhs op rhs label   est lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

  m  ~   x     a 1.676   0.828   2.525 0.832 2.520 0.950 0.950 

  y  ~   m     b 0.470   0.325   0.616 0.325 0.616 0.950 0.950 

  y  ~   x       1.540   0.618   2.461 0.623 2.457 0.950 0.950 

 ab := a*b    ab 0.789   0.370   1.313 0.323 1.254 0.950 0.950 

The LBCIs are [lbci_lb, lbci_ub]. For comparison, the original CIs are also printed 

(Wald CIs for free parameters and delta-method CI for the indirect effect). The columns cl_lb 

and cl_ub are the achieved levels of confidence of the bounds (the LR test p-value if a 

parameter is fixed to a bound), which should be close to the level of confidence of the 

https://osf.io/b9a2p/files/osfstorage
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intervals (.95 for a 95% confidence interval). As expected, LBCIs and the original CIs are 

close to each other for the path coefficients, suggesting that the quadratic approximation is 

good. However, the lower bound of the indirect effect (.370) is closer to the point estimate 

and farther away from zero. As shown in the supplementary file with full output (med.html), 

if ab is fixed to the lower bound of LBCI (.370), the LR test p-value is .05. If fixed to the 

lower bound of Wald CI (.323), the p-value is .028, showing that the lower bound is farther 

away from the point estimate than it should be. 

Standardized Estimates 

LBCIs for parameter estimates in the standardized solution, such as standardized path 

coefficients, correlations, and standardized indirect effects can also be formed using semlbci. 

This is an excerpt of the standardized solution results: 

lhs op rhs label est.std    se      z pvalue ci.lower ci.upper 

  m  ~   x     a   0.265 0.066  4.035  0.000    0.136    0.394 

  y  ~   m     b   0.403 0.059  6.863  0.000    0.288    0.518 

  y  ~   x         0.209 0.062  3.346  0.001    0.087    0.331 

 ab := a*b    ab   0.107 0.031  3.463  0.001    0.046    0.168 

Note that the CIs in the standardized solution is delta-method CIs and are symmetric 

around the point estimates, including the standardized indirect effect. To form the LBCIs for 

the standardized solution, just add standardized = TRUE: 

fit_lbci_std <- semlbci(fit, standardized = TRUE) 

This is an excerpt of the output: 

lhs op rhs id label est.std lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

  m  ~   x  1     a   0.265   0.132   0.389 0.136 0.394 0.950 0.950 

  y  ~   m  2     b   0.403   0.283   0.512 0.288 0.518 0.950 0.950 

  y  ~   x  3         0.209   0.084   0.328 0.087 0.331 0.950 0.950 

 ab := a*b  7    ab   0.107   0.051   0.173 0.046 0.168 0.950 0.950 

The sampling distribution of the standardized solution is not expected to be 

symmetric, and more so for the standardized indirect effect. Delta-method CIs are symmetric 

for all the standardized estimates, while the LBCIs take into account possible asymmetry. 

The lower bound of the LBCI of the indirect effect (.051) is again farther away from zero and 

closer to the point estimate, though the magnitude is smaller on the standardized metric. As in 
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the case of the original estimates, all the bounds achieved the desired level of confidence. 

That is, if a standardized parameter is fixed to this bound, the LR test p-value is .05. 

A Confirmatory Factor Analysis (CFA) Model 

The function semlbci() can also be used to form the LBCIs for factor loadings and 

factor covariances in a CFA model. We use the Holzinger-Swineford dataset as an example 

again. First, fit the model as usual: 

mod <-'visual  =~ x1 + x2 + x3 

       textual =~ x4 + x5 + x6 

       speed   =~ x7 + x8 + x9' 

fit <- cfa(model = mod, data = HolzingerSwineford1939) 

To form the LBCIs for all free parameters except for variances and error variances, 

simply pass the fit object to semlbci() as before. This model has 21 free parameters, and the 

search can be slow. To speed up the search, researchers can add parallel = TRUE to enable 

parallel processing, and use ncpus to set the number of cores to use (source file cfa.Rmd): 

fit_lbci <- semlbci(fit, parallel = TRUE, ncpus = 6) 

Running on a system with Intel Core i7-8700 with this setting took about 16 seconds. 

This is an excerpt of the results: 

    lhs op     rhs   est lbci_lb lbci_ub    lb    ub ratio_l ratio_u 

 visual =~      x2 0.554   0.356   0.793 0.358 0.749   1.013   1.224 

 visual =~      x3 0.729   0.520   0.996 0.516 0.943   0.977   1.245 

textual =~      x5 1.113   0.992   1.249 0.985 1.241   0.946   1.062 

textual =~      x6 0.926   0.821   1.044 0.817 1.035   0.966   1.082 

  speed =~      x8 1.180   0.923   1.536 0.857 1.503   0.795   1.101 

  speed =~      x9 1.082   0.782   1.655 0.785 1.378   1.011   1.934 

 visual ~~ textual 0.408   0.262   0.577 0.264 0.552   1.017   1.173 

 visual ~~   speed 0.262   0.162   0.382 0.152 0.373   0.909   1.090 

textual ~~   speed 0.173   0.083   0.281 0.077 0.270   0.932   1.112 

 

The LBCIs for some of the loadings are substantially different from Wald CIs. If the 

ratio of the distance from the point estimate to an LBCI bound to that from the point estimate 

to the corresponding original CI bound is larger than a threshold (1.5 by default), two new 

columns will be displayed, ratio_l and ratio_u. The ratio is 1.934 for the upper bound of the 

factor loading of x9, (1.655 - 1.082) / (1.378 - 1.082) ≈ 1.934. As shown in Figure 4, the 

quadratic approximation is poor for this factor loading. The Wald CI is too narrow. 

Standardized Factor Loadings and Factor Correlations 
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To form the LBCIs for standardized factor loadings and factor correlations, simply 

add standardized = TRUE. However, the search for the LBCIs of standardized estimates can 

be slow for a model with many free parameters. Therefore, parallel processing is 

recommended, or the LBCIs are only formed for parameters with which the magnitudes of 

the standardized estimates will be interpreted. 

fit_lbci_std <- semlbci(fit, parallel = TRUE, ncpus = 6, standardized = TRUE) 

Running on a system with Intel Core i7-8700 took about 13 seconds. Note that 

variances and error variances are removed by default. Therefore, only the LBCIs for 12 

parameters (9 standardized factor loadings and 3 factor correlations) will be formed. This is 

the output for the factor correlations: 

    lhs op     rhs id est.std lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

 visual ~~ textual 22   0.459   0.326   0.575 0.334 0.584 0.950 0.950 

 visual ~~   speed 23   0.471   0.300   0.633 0.328 0.613 0.950 0.950 

textual ~~   speed 24   0.283   0.139   0.418 0.148 0.418 0.950 0.950 

The LBCIs for the three factor correlations are close to the delta-method CIs except 

for that of visual-speed correlation. The LBCI of visual-speed correlation is wider than the 

delta-method CI. Again, the LBCIs correctly reflect the expected asymmetry of the 

distribution of correlations, with the bounds away from zero closer to the point estimates, and 

the other bounds closer to zero. 

Latent Level Mediation 

Functions of parameters are also supported for a model with latent variables. We use 

the sample dataset mediation_latent, provided with semlbci, for illustration. It has nine 

variables loaded on three factors: x1 to x3 on fx, x4 to x6 on fm, and x7 to x9 on fy. The effect 

of fx on fy is mediated through fm, with a direct path from fx to fy included: 

mod <- 'fx =~ x1 + x2 + x3 

        fm =~ x4 + x5 + x6 

        fy =~ x7 + x8 + x9 

        fm ~ a * fx 

        fy ~ b * fm + cp * fx 

        ab := a*b' 

fit <- sem(model = mod, data = mediation_latent) 

The call to find the LBCI of the indirect effect is similar to that in previous examples. 
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To specify a derived parameter, use the same syntax in lavaan but omit the definition after 

":=". The standardized latent indirect effect can be found by adding standardized = TRUE 

(source file med_lav.Rmd): 

fit_lbci <- semlbci(fit, pars = "ab := ") 

fit_lbci_std <- semlbci(fit, pars = "ab := ", standardized = TRUE) 

These are the results: 

Unstandardized 

 lhs op rhs label     est lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

  ab := a*b    ab   0.115   0.016   0.247 0.007 0.222 0.950 0.950 

Standardized 

 lhs op rhs label est.std lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

  ab := a*b    ab   0.115   0.017   0.227 0.015 0.214 0.950 0.950 

The latent indirect effect is .115, with 95% delta-method CI .007 to .222 and 95% 

LBCI .016 to .247. The standardized indirect effect is also .115, with 95% delta-method 

CI .015 to .214 and 95% LBCI .017 to .227. The log profile likelihood functions (Figure 5) 

are asymmetric as expected, with the delta-method CIs too narrow compared to the LBCI it 

approximates. 

For comparison, 95% NPCIs were also formed, with 5000 bootstrap samples. The 

95% NPCI of the latent indirect effect is .008 to .255, wider than both delta-method CI and 

LBCI. The 95% NPCI of the standardized latent indirect effect is .009 to 241, again wider 

than both other CIs. The sample dataset was generated from a multivariate normal 

distribution and so the LBCI based on ML is valid and preferred in this example. 

A Multisample Model 

Multisample models with or without between-group equality constraints are also 

supported. We use the Holzinger and Swineford dataset again as an example and use school 

as the grouping variable: 

mod <- 'visual  =~ x1 + c(lambda2, lambda2)*x2 + c(lambda3, lambda3)*x3 

        textual =~ x4 + c(lambda5, lambda5)*x5 + c(lambda6, lambda6)*x6 

        speed   =~ x7 + c(lambda8, lambda8)*x8 + c(lambda9, lambda9)*x9' 

fit <- cfa(model = mod, data = HolzingerSwineford1939, 

           group = "school") 

The factor loadings are constrained to be equal across groups and so LBCIs can be 
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formed for only one set of them. To do this, we can specify the parameters for which LBCIs 

will be formed using the pars argument. Users can form a vector of strings using lavaan 

model syntax, and "multiply" the right-hand side by the group number: 

free_loadings <- c("visual  =~ 1*x2", "visual  =~ 1*x3", 

                   "textual =~ 1*x5", "textual =~ 1*x6", 

                   "speed   =~ 1*x8", "speed   =~ 1*x9") 

Alternatively, they can be specified as a usual lavaan model: 

free_loadings <- "visual  =~ 1*x2 + 1*x3 

                  textual =~ 1*x5 + 1*x6 

                  speed   =~ 1*x8 + 1*x9" 

The first approach is easier to read while the second approach is more compact. 

fit_lbci_loadings <- semlbci(fit, pars = free_loadings, parallel = TRUE, ncpus = 6) 

Running on a system with Intel Core i7-8700 took about 34 seconds. These are part of 

the results: 

    lhs op rhs group   est lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

 visual =~  x2     1 0.599   0.396   0.847 0.402 0.795 0.950 0.950 

 visual =~  x3     1 0.784   0.573   1.064 0.573 0.996 0.950 0.950 

textual =~  x5     1 1.083   0.958   1.225 0.951 1.215 0.950 0.950 

textual =~  x6     1 0.912   0.802   1.037 0.798 1.025 0.950 0.950 

  speed =~  x8     1 1.201   0.953   1.536 0.897 1.506 0.950 0.950 

  speed =~  x9     1 1.038   0.771   1.494 0.771 1.304 0.950 0.950 

The achieved level of confidence is .95 for all confidence bounds. 

Standardized Factor Correlations 

Forming the LBCIs for parameters in the standardized solution for a multisample 

model with equality constraints can be substantially slower. Therefore, they can be formed 

just for parameters that will be interpreted, such as the factor correlations. Again, to select the 

factor correlations, we can use lavaan model syntax. For a multisample model, if the group 

number is not specified, then LBCIs will be formed for the parameter in all groups. 

fit_lbci_fcor <- semlbci(fit, 

  pars = c("visual ~~ textual", "visual ~~ speed", "textual ~~ speed"), 

  parallel = TRUE, ncpus = 6, standardized = TRUE) 

Running on a system with Intel Core i7-8700 took about 50 seconds. These are parts 

of the results: 

    lhs op     rhs group id est.std lbci_lb lbci_ub    lb    ub cl_lb cl_ub 

 visual ~~ textual     1 22   0.485   0.291   0.640 0.315 0.654 0.950 0.950 

 visual ~~   speed     1 23   0.340   0.097   0.565 0.118 0.563 0.950 0.950 
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textual ~~   speed     1 24   0.333   0.127   0.519 0.138 0.529 0.950 0.950 

 visual ~~ textual     2 58   0.540   0.357   0.692 0.373 0.708 0.950 0.950 

 visual ~~   speed     2 59   0.536   0.319   0.725 0.352 0.719 0.950 0.950 

textual ~~   speed     2 60   0.345   0.143   0.524 0.166 0.523 0.950 0.950 

The sampling distribution of correlations is expected to be skewed toward zero. 

LBCIs correctly reflect this. All the lower bounds of LBCIs of the factor correlations are 

closer to zero, and less biased than the overoptimistic delta-method CIs which assume a 

symmetric distribution. 

Robust LBCI 

Robust LBCI using the method proposed by Falk (2018) is also supported in semlbci. 

We used the latent level mediation model again but used the dataset mediation_latent_skewed 

provided with semlbci. The variables were generated from a population with indicator error 

terms that are exponentially distributed. The latent level mediation model is fitted using MLR 

as the estimator in lavaan (source file med_lav_nnorm.Rmd): 

fit <- cfa(model = mod, data = mediation_latent_skewed, estimator = "MLR") 

To form the robust LBCIs, add robust = "satorra.2000". Currently, only the method 

proposed by Falk (2018) using the robust LR test by Satorra (2000) is supported.  

fit_lbci <- semlbci(fit, pars = "ab := ", robust = "satorra.2000") 

fit_lbci_std <- semlbci(fit, pars = "ab := ", robust = "satorra.2000", 

                        standardized = TRUE) 

This is an excerpt of the output: 

Unstandadized: 

  lhs op rhs label   est lbci_lb lbci_ub     lb    ub cl_lb cl_ub       robust 

   ab := a*b    ab 0.057   0.004   0.128 -0.002 0.116 0.950 0.950 satorra.2000 

Standardized: 

lhs op rhs label est.std lbci_lb lbci_ub     lb    ub cl_lb cl_ub       robust 

 ab := a*b    ab   0.071   0.009   0.146  0.005 0.138 0.950 0.950 satorra.2000 

Note that the columns lb and ub are the confidence intervals based on robust standard 

errors in the original output. All columns are interpreted as before, except that the columns 

lbci_lb and lbci_ub are the bounds of robust LBCIs, and cl_lb and cl_ub are one minus the p-

values of the χ2 difference test by Satorra (2000) when fixing the parameters to their 

confidence bounds. Robust LBCI is also supported for all previous scenarios, such as 
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multisample models and path models with only observed variables. 

For comparison, 95% NPCIs were also formed for the latent indirect effect. The 95% 

NPCI of the unstandardized indirect effect is .008 to .138, and that of the standardized 

indirect effect is .010 to .152. Both LBCIs and NPCIs are close to each other and yield the 

same conclusion for both unstandardized and standardized latent indirect effects. However, 

ran on Intel Core i7-8700 with six cores, NPCIs took about 96 seconds while LBCI only took 

about six seconds with two cores (one for each bound). The delta-method CIs based on the 

robust variance-covariance matrix, on the other hand, are narrower than both LBCIs and 

NPCIs, and suggest the unstandardized latent indirect effect is nonsignificant.  

Implementation 

Algorithms 

The 95% LBCI can be formed manually in any SEM software package by fixing a 

parameter or a function of parameters to different values until two values, one smaller and 

one larger than the point estimates are found that yield 1-df LR test p-values of .05. The 

challenge is to do this efficiently and automatically. As reviewed by Pek and Wu (2015), 

there are several algorithms to form the LBCI. In SEM, the algorithm proposed by Neale and 

Miller (1997) is a popular one, used as the default in OpenMx and in the simulation studies by 

Falk (2018). Another algorithm was proposed by Wu and Neale (2012), also implemented in 

OpenMx. Although Wu and Neale originally proposed the algorithm to form LBCI for 

bounded parameters (free parameters with attainable bounds), we did not include their steps 

for bounded parameters and only adopted the general algorithm illustrated by Pek and Wu 

(Equation 12), which is applicable to other parameters and functions of parameters. We call 

this algorithm the WNPW algorithm. 

When developing an LBCI package for lavaan, we adopted two goals. First, we 

wanted to use only information exported by lavaan whenever possible, such that it is more 



LBCI IN R 23 

 

   

 

likely to be compatible with future versions of lavaan. Second, we wanted to use as many 

functions exported by lavaan as possible, to ensure that the results are consistent with those 

by lavaan. This is because one of the checks of a bound is to check the p-value of the LR test 

between the original model and a model with the target parameter or function of parameters 

constrained to this bound, and this test is to be conducted by the lavaan. These two goals also 

allow for possible expansion to other SEM packages in the future if they export similar 

information and functions. We tried the approach by Neale and Miller (1997) in an earlier 

version of semlbci. However, we found that it is easier to program using the WNPW 

algorithm if we want to achieve these two goals. Therefore, we developed the package based 

on this algorithm (see the Online Appendix of Pek & Wu, 2015, for an example of this 

algorithm in OpenMx). 

The implementation of robust LBCI was inspired by the work of Falk 

(https://github.com/falkcarl/lavaan). Different from his work, we developed a separate 

package instead of proposing changes in lavaan. Therefore, we adopted Falk's application of 

Satorra's (2000) LR test to form robust LBCI but implemented it using Pek and Wu's (2015) 

version of Wu and Neale (2012). For optimization, the package nloptr (Ypma et al., 2022, an 

R interface to NLopt by Johnson) was adopted, using the SLSQP algorithm (Kraft, 1994) as 

the default algorithm. We present briefly the implementation below. The full technical details 

can be found in technical appendices at the OSF project page for this manuscript 

(https://osf.io/b9a2p/). 

LBCI 

To find the lower bound 𝜃𝐿 of the 100(1 − α)% LBCI of 𝜃𝑗 , 𝜃𝐿 is minimized with 

respect to all parameters (𝜃𝐿 , 𝜽𝑞), 𝜽𝑞 being all parameters other than 𝜃𝐿, subject to the 

constraint 𝐹(𝜃𝐿 , 𝜽𝑞) = 𝐹(𝜽̂) + χ1,1−α
2 /2𝑛, where 𝐹(𝜽̂) is the value of the discrepancy 

function evaluated at ML estimate 𝜽̂, χ1,1−α
2  is the χ2 critical value at df = 1 and level of 

https://github.com/falkcarl/lavaan
https://osf.io/b9a2p/
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significance = α (about 3.84 with α = .05), and n is the sample size (total sample size in 

multisample models). To find the upper bound, 𝜃𝑈, −𝜃𝑈 is minimized (equivalently, 𝜃𝑈 is 

maximized). We used 2n is because it is how the model χ2 is computed from the value of the 

discrepancy function in lavaan (the output of lavaan::fitMeasures() with what = "fmin").3 

This algorithm has two advantages. First, it is easy to program (Pek & Wu, 2015). As long as 

an SEM program returns the discrepancy function value for user-supplied estimates, any 

optimization function that allows for equality constraints can be used to find the confidence 

bound. As an example, our implementation is a generalization of the examples in OpenMx by 

Pek and Wu to lavaan. Second, it can be extended to a function of parameters ℎ(𝜽), such as a 

standardized path coefficient or a correlation, by minimizing ℎ(𝜽) with the aforementioned 

constraint (note that the derived parameter may depend only on some elements in 𝜽). For a 

model with equality constraints, they are simply included as additional equality constraints in 

the optimization. 

Robust LBCI 

Robust LBCI is formed similarly but the Satorra (2000) LR test is used as proposed 

by Falk (2018), which is natively supported in lavaan. The principle is the same: search for 

the 95% LBCI bounds for a parameter by finding values to which the Satorra (2000) LR test 

p-values are .05 when fixing the parameter to these bounds, without the need to know how to 

adjust the 𝜒2. The procedure proposed by Falk can be readily generalized to multisample 

models in lavaan because lavaan supports doing the Satorra LR test for multisample models, 

and semlbci uses this test to form robust LBCIs and check their validity. For a multisample 

model with m samples, when constraining a function of all parameters, ℎ0(𝜽), to a value in 

the more restricted model, the scaling factor can be estimated by (Satorra, 2000, Equation 

 
3 This is not the case if the argument likelihood is set to "wishart". In the current version, semlbci() will not run 

on a model fitted with likelihood set to "wishart". 
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𝑓1𝐖1
⋱

𝑓𝑗𝐖𝑗
⋱

𝑓𝑚𝐖𝑚)

  
 
, 

𝚫 =

(

 
 

𝚫1
⋮
𝚫𝑗
⋮
𝚫𝑚)

 
 

 

where 𝑓𝑗 = 𝑛𝑗/𝑛, 𝑛𝑗  is the sample size of the jth sample, n is the total sample size, 𝐖𝑗  is the 

weight matrix (the inverse of the estimated asymptotic covariance matrix of sample statistics 

assuming multivariate normality) in the jth sample, 𝚪𝑗
∗ is the asymptotic distribution-free 

estimate of the covariance matrix of the sample statistics in the jth sample (Browne, 1984), 

𝚫𝑗 = 𝜕𝒔𝑗 𝜕𝜽
′⁄  evaluated at 𝜽̂, 𝒔𝑗 is the sample statistics in the jth sample, ℎ0̇(𝜽̂) =

𝜕ℎ0(𝜽) 𝜕𝜽
′⁄  evaluated at 𝜽̂, and 𝑷 = 𝚫′𝐖𝚫 (Satorra, 2000, p. 239). For one-sample models, 

𝑐̂ is equivalent to Equation 10 in Falk (2018) with one equality constraint. When finding the 

LBCI for a free parameter 𝜃𝑗 , ℎ0(𝜽) = 𝜃𝑗 . When finding the LBCI for a derived parameter 

ℎ(𝜽), ℎ0(𝜽) = ℎ(𝜽). The lavTestLRT() in lavaan uses the method proposed by Asparouhov 

and Muthén (2010) when Satorra (2000) LR test is used. Therefore, the critical value is 

 
4 This is how Satorra's (2000) method is implemented in lavTestLRT() of lavaan (version 0.6-13). 
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adjusted to χ∗1,1−α
2 = 𝑎−1(𝜒1,1−𝛼

2 − 𝑏), where 𝑎 = 1 tr(𝐌2)⁄  and 𝑏 = 1 − tr(𝐌) tr(𝐌2)⁄ , 𝐌 

depends only on the fitted model and ℎ0(𝜽).
5 After the adjusted critical value is computed, 

the confidence bound can be found as described above with the critical 𝜒2 in the constraint 

replaced by χ∗1,1−α
2

. The validity of a bound of robust LBCI can be verified by doing an LR 

test using lavTestLRT() with method = "satorra.2000" and A.method = "exact" (because the 

two models are necessarily nested in the parameter sense). 

Validity Checks 

Because a closed-form solution for LBCI is not available, the bound found needs to 

be checked for reasonability (Pritikin et al., 2017). In semlbci, the following three checks are 

conducted for each bound found before returning the results: 

1. The optimization function nloptr() returns a code of "0" (success). 

2. The values of the free parameters at the solution (𝜽) do not result in an inadmissible 

solution as defined by the SEM function, lavaan in semlbci. This is done by 

lavaan::lavInspect() with what = "post.check"). 

3. The p-value of the LR test between the original model and a model with the target 

parameter constrained to the bound is close enough to 1 – level of confidence of the 

requested interval (.05 for a 95% LBCI) within a tolerance (default is 0.0005)6. 

A bound certainly should pass the third check to be a valid bound of LBCI because 

this is the defining characteristic of a bound of LBCI. However, to be conservative, only a 

bound that passes all three checks will be returned. If a bound found in the first attempt fails 

any of these checks, semlbci() will try "harder" several times using different settings (e.g., 

different tolerance values for convergence, different starting values). If it still fails at least 

one of the checks, after a certain number of attempts, NA (not available) will be returned. We 

 
5 In future versions of semlbci, we can use lavaan to compute a and b directly because they are exported by 

lavTestLRT() in the latest version of lavaan at the time of writing (0.6-13). 
6 This value can be changed by users for higher precision in the search. 
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cannot "prove" that a bound passing all checks is valid, which is impossible due to the nature 

of LBCI (Meeker & Escobar, 1995). Nevertheless, by imposing these checks, we believe it 

can at least reject bounds that are suspicious. 

In addition to these checks, based on the suggestion by Pritikin et al., 2017, semlbci 

also computes the ratio of the distance of a bound from the point estimate to the distance of 

the corresponding Wald CI or delta-method CI from the point estimate, to detect whether a 

bound is too far or too close to the point estimate compared to the Wald CI bound. If the ratio 

is at 1.5 or above or 1 / 1.5 or below (the default7), the bound will still be returned but a note 

will be included in the printout, alerting the users to check the bound for plausibility. 

Comparing Results with OpenMx 

Although the algorithms used are not new and the definitional validity of an LBCI can 

be checked by the LR test, we also conducted a small-scale simulation study to compare the 

LBCIs by semlbci with those by OpenMx, to check whether semlbci works as expected. A 

simple mediation model identical to that in the previous example was used to generate the 

data, with a path and b path equal and c' path fixed to zero. Four levels of values for the a 

path and b path were examined: .00, .10, .30, and .50. The sample sizes examined were 100 

and 300. Each condition had 2000 replications. The LBCIs of semlbci and OpenMx for the a 

path (unstandardized and standardized), the indirect effect (ab, unstandardized and 

standardized), and the error variance of y were compared. They yield LBCIs with negligible 

differences across all the replications and have similar coverage probabilities across 

conditions. The full details of the simulation study can be found at the folder simulation at the 

OSF page for this manuscript  (https://osf.io/b9a2p/files/osfstorage). 

When To Use LBCIs? 

Despite the advantages of LBCIs, we are not advocating the use of LBCIs 

 
7 This ratio can be changed by users. 

https://osf.io/b9a2p/files/osfstorage
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unconditionally because (a) the WCIs can approximate the likelihood function very well in 

some cases, and (b) forming LBCIs can be difficult in some models and for some parameters 

due to the lack of a closed-form solution. Although the LBCIs could be formed quickly in the 

previous examples, we encountered cases in which the search took more than one minute or 

even failed. Therefore, we suggest running semlbci() with the default settings first and 

parallel processing enabled. If LBCIs can be formed for all free parameters (error variances 

and variances excluded by default), then LBCIs should be reported instead of WCIs because 

WCIs are approximations of the LBCIs. If it takes too long to run or the search for confidence 

bounds fails for some parameters even after tweaking the options of the optimizer, then 

researchers can use semlbci() to form LBCIs only for major parameters for which asymmetry 

in the likelihood function is suspected, such as standardized path coefficients, indirect effects, 

and correlations, because this is when the quadratic approximation by WCI is likely to be 

poor. If necessary, researchers can tweak some technical options in the search (described in 

the help documents and the technical appendices). However, this is usually not necessary 

because semlbci() internally will try adjusting some options, including randomizing the start 

values, if the initial search fails. The easiest option is to set try_k_more_times to an integer 

higher than 2 (the default value), telling the function to do more attempts. 

If researchers deemed that bootstrapping CIs are more appropriate for a parameter or 

a derived parameter, the LBCIs or robust LBCIs can still be used as proxies if the 

computation cost of bootstrapping CIs is high. During the model selection and comparison 

stage, LBCIs can be used for hypothesis testing and interval estimates. Once the final model 

has been selected, NPCIs can be formed for selected parameters for the final results. 

A Cautionary Note on Using LBCIs 

Despite the advantages of LBCIs over WCIs, like all confidence interval methods, 

their performance such as coverage probabilities cannot be taken for granted. As found by 
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Falk (2018), even percentile bootstrap CI, which outperformed many methods investigated, 

LBCI included, may still perform poorly in some conditions. Therefore, our goal is to provide 

one more option for researchers to form CIs for parameter estimates. Researchers still need to 

justify their choice of a method, ideally based on previous empirical findings. Note that this 

also holds for bootstrapping. Bootstrapping CIs can be formed for virtually any parameter 

estimates easily (e.g., using bootstrapLavaan() in the lavaan package) but its appropriateness 

cannot be taken for granted (Yung & Bentler, 1996). With semlbci, researchers interested in 

comparing the performance of LBCI with other methods can have one more option in the 

choice of SEM package. 

Limitations and Future Development 

The LBCI, formed by inverting the LR test, is only "as good as" the LR test. First, we 

took a defensive approach in developing semlbci and the current version will only accept a 

model fitted by ML, generalized least squares (GLS), or asymptotic distribution-free (ADF) 

method (called WLS in lavaan) (including their variants in lavaan, such as MLR, MLM, etc.) 

with missing data. Second, multilevel models are also currently not supported. Development 

is ongoing to support multilevel models. Last, semlbci does not yet support the adjustment for 

bounded parameters proposed by Wu and Neale (2012) when a point estimate is close to a 

boundary. This should not be a problem in most typical cases but may be relevant when 

correlations close to one or variances close to zero are possible. In the current version, the 

algorithm should fail because a valid bound cannot be found without failing the checks and 

so NA should be returned. Support for point estimates close to the boundary will be included 

in the future.  
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Table 1. 

Wald Confidence Bounds and the Likelihood-Ratio p-Values at the Bounds 

Parameters Estimate 

Lower 

Bound 

Upper 

Bound 

p-value 

(Lower 

Bound) 

p-value 

(Upper 

Bound) 

Factor Loadings      

x2 on visual 0.554 0.358 0.749 .053 .102 

x3 on visual 0.729 0.516 0.943 .045 .105 

x5 on textual 1.113 0.985 1.241 .038 .064 

x6 on textual 0.926 0.817 1.035 .042 .069 

x8 on speed 1.180 0.857 1.503 .011 .070 

x9 on speed 1.082 0.785 1.378 .053 .229 

Factor Covariances      

visual with textual 0.408 0.264 0.552 .054 .091 

visual with speed 0.262 0.152 0.373 .030 .070 

textual with speed 0.173 0.077 0.270 .035 .075 

Note. The p-values are the 𝜒2 difference test p-values comparing the fitted model to a model 

with a parameter fixed to its bound (upper or lower). 
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Figure 1 

A Sample Confirmatory Factor Analysis Model Fitted to the Holzinger and Swineford 

Dataset 
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Figure 2 

Log Profile Likelihood and Its Quadratic Approximation: Covariance between Visual Ability 

and Speed Ability in the Confirmatory Factor Analysis Model Fitted to Holzinger-Swineford 

Dataset 

 

Note. The blue solid line is the plot of log profile likelihood of the covariance between visual 

and speed in the confirmatory factor analysis on the Holzinger-Swineford dataset. The red 

dotted line is the plot of log profile likelihood using quadratic approximation. The value 

when the log profile loglikelihood is zero is the maximum likelihood estimate. The log 

profile loglikelihood is -1.92 at the horizontal solid line. The two blue triangles form the 95% 

likelihood-based confidence interval, and the two red circles form the 95% Wald-type 

confidence interval. The p-values are the 𝜒2 difference test p-values when the parameter is 

fixed to the corresponding values. 
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Figure 3 

Log Profile Likelihood and Its Quadratic Approximation: Indirect Effect (ab) in the Simple 

Mediation Model Fitted to the Tar-Or et al. (2010) Dataset 

 

Note. The blue solid line is the plot of log profile likelihood of the indirect effect (ab) in the 

simple mediation model fitted to the Tar-Or et al. (2010) dataset. The red dotted line is the 

plot of log profile likelihood using quadratic approximation. The value when the log profile 

loglikelihood is zero is the maximum likelihood estimate. The log profile loglikelihood is -

1.92 at the horizontal solid line. The two blue triangles form the 95% likelihood-based 

confidence interval, and the two red circles form the 95% Wald-type confidence interval. The 

p-values are the 𝜒2 difference test p-values when the parameter is fixed to the corresponding 

values. 
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Figure 4 

Log Profile Likelihood and Its Quadratic Approximation: Factor Loading of x9 on Speed 

Ability in the Confirmatory Factor Analysis Model Fitted to Holzinger-Swineford Dataset 

 

Note. The blue solid line is the plot of log profile likelihood of the factor loading of x9 on 

speed ability in the confirmatory factor analysis on the Holzinger-Swineford dataset. The red 

dotted line is the plot of log profile likelihood using quadratic approximation. The value 

when the log profile loglikelihood is zero is the maximum likelihood estimate. The log 

profile loglikelihood is -1.92 at the horizontal solid line. The two blue triangles form the 95% 

likelihood-based confidence interval, and the two red circles form the 95% Wald-type 

confidence interval. The p-values are the 𝜒2 difference test p-values when the parameter is 

fixed to the corresponding values. 
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Figure 5 

Log Profile Likelihood and Its Quadratic Approximation: Unstandardized (ab) and 

Standardized (ab_std) Latent Indirect Effect in the Latent Mediation Model Fitted to the 

mediation_latent Dataset 

 
 

Note. The blue solid lines are the plot of log profile likelihoods of the unstandardized (ab) 

and standardized (ab_std) latent indirect effect in the latent mediation model fitted to the 

mediation_latent dataset. The red dotted lines are the plots of log profile likelihoods using 

quadratic approximation. The values when the log profile loglikelihoods are zeros are the 

maximum likelihood estimates. The log profile loglikelihood is -1.92 at the horizontal solid 

lines. The two blue triangles in each panel form the 95% likelihood-based confidence 

interval, and the two red circles in each panel form the 95% Wald-type confidence interval. 

The p-values are the 𝜒2 difference test p-values when a parameter is fixed to the 

corresponding values. 

 

 

 


