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Abstract

There are three common types of confidence interval (CI) in structural equation modeling
(SEM): Wald-type CI, bootstrapping CI, and likelihood-based CI (LBCI). LBCI has the
following advantages: 1) it has better coverage probabilities and Type I error rate compared
to Wald-type CI when the sample size is finite; 2) it correctly tests the null hypothesis of a
parameter based on likelihood ratio chi-square difference test; 3) it is less computationally
intensive than bootstrapping CI; and 4) it is invariant to transformations. However, LBCI is
not available in many popular SEM software packages. We developed an R package, sem/bci,
for forming LBCI for parameters in models fitted by /avaan, a popular open-source SEM
package, such that researchers have more options in forming Cls for parameters in SEM. The
package supports both unstandardized and standardized estimates, derived parameters such as
indirect effect, multisample models, and the robust LBCI proposed by Falk (2018).

Keywords: likelihood-based confidence interval, structural equation modeling,

confidence interval, robust method
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semlbci: An R package for Forming Likelihood-Based Confidence Intervals for
Parameter Estimates, Correlations, Indirect Effects, and Other Derived Parameters

Forming confidence intervals (CIs) is an important task in structural equation
modeling (SEM). In addition to providing an interval estimate of a parameter that takes into
account the sampling variation, it can also be used to test a hypothesis when a z-test or a ¢-test
is not available, such as testing the indirect effect in a mediation model. The most popular
type of CI is the Wald-type CI (WCI, Pek & Wu, 2015). Another popular type of CI is the
bootstrapping CI (BCI, Efron & Hastie, 2016), which has several variants that differ in the
resampling method (e.g., nonparametric bootstrapping, parametric bootstrapping) and the CI
formation procedure (e.g., percentile CI and bias-corrected accelerated CI). They are
available in most commonly used SEM software packages. The third type of CI, likelihood-
based confidence interval (LBCI), is less popular in social sciences and available only in a
limited number of SEM software packages (e.g., OpenMx, Neale, Hunter, Pritikin, Zahery,
Brick, Kirkpatrick, Estabrook, Bates, Maes, & Boker, 2016), despite its advantages over the
other two types in some situations. To give researchers the option to use LBCI, we developed
semlbci, an R package, for forming LBCIs for parameters in models fitted by lavaan
(Rosseel, 2012), a popular R package for SEM. We first briefly introduce LBCI, including its
advantages and disadvantages. We then illustrate how to use semlbci to form LBCIs for
parameters and functions of parameters, such as indirect effects and standardized coefficients
(e.g., correlations). Last, we discuss current limitations and possible future directions for the
package.

A Brief Introduction to CI, LBCI, WCI, and BCI

To illustrate the advantages of LBCI over WCI, we first present a brief introduction to

Cl in general. We then present two aspects of LBCI’s performance that highlight its

substantial difference from WCI. LBCI, WCI, and BCI have been discussed and compared in
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detail by others in this journal (e.g., Falk & Biesanz, 2015; Pritikin, Rappaport, & Neale,
2017; Falk, 2018). We will only give a brief introduction to them, focusing on the test
inversion approach presented below when comparing LBCI and WCI. Interested readers can
consult Falk (2018) for a more comprehensive introduction to WCI and LBCI in SEM, and
Meeker and Escobar (1995) for a general introduction of LBCI in other contexts.
Confidence Interval as Inverting a Test

For reasons to be presented later, we first use a sample mean to illustrate how CI is
formed and used. Suppose a sample of size n on a variable x is drawn from a population:

{x1, %2, ..., X}, ..., Xn }, Xx; the value of the ith case, X the sample mean, s, the sample standard
deviation. The standard error (SE) of X, Sg, is s, /v/n. Assuming the population distribution of
x is normal, to test whether x is significantly different from x,, with level of significance a,
two-tailed, the critical ¢, ty = t,_1,1-q/2, is computed, n — 1 the degrees of freedom (df) and
1 — a/2 the area to the left of t,. If the sample ¢ statistics, tz = |X — x¢|/Sg, is greater than
to, X is declared to be significantly different from x; at a (two-tailed).

Instead of specifying x,, we can also find the interval of nonsignificance by inverting
the test (Casella & Berger, 2001): [x & tysz]. All values on the left of the interval are less
than X — t,s%, and all values on the right of the interval are greater than X + t,s5.
Equivalently, X is significantly different from all values outside the interval. If x is tested
against X * t,Sg, the two bounds of the interval, the two-tailed p-values of the #-test are
exactly a. If tested against values outside the interval, the two-tailed p-values are less than a.
If tested against values inside the interval, the two-tailed p-values are greater than a. That is,
X is not significantly different from all values in this interval at a, two-tailed. This interval is
called the 100(1 — a)% confidence interval (CI) of X based on the #-test.

Using the Confidence Intervals: Hypothesis Testing and Interval Estimation

There are two common uses of CI. If a CI is formed by inverting a known statistical
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test, then the CI can be used for hypothesis testing based on this test, as shown above. Even if
it is formed by methods like bootstrapping, it is still usually used this way. It is probably the
most popular method for testing an indirect effect (e.g., Hayes, 2022), by checking whether
zero is outside a 100(1 — a)% CI. If yes, an indirect effect is significantly different from
zero at a (two-tailed). Nevertheless, as shown above, the CI also shows the range of values
from which an estimate is not significantly different at a (two-tailed), as long as the test is
valid for this range of values. Using CI to test against zero is only a special case. If used this
way, then the validity of a CI can be evaluated by checking the p-values of an estimate when
tested against the two bounds of the interval. For a 100(1 — a)% CI, the two-tailed p-values
should be equal to a, which is necessarily the case for the #-based CI for sample means and
ClIs formed in a similar way.

Another common use of Cl is as an interval estimate of a parameter. A common
frequentist interpretation of the probability that a sample 100(1 — a)% CI includes the
population value of the parameter being estimated is 100(1 — a)%. Note that, for any
particular sample CI, it either includes or excludes the population value. Therefore, in
assessing the validity of a CI procedure, one common way is to estimate its coverage
probabilities across situations and see how close they are to the expected value. However, a
CI can have the expected coverage probability but cannot be used for doing a two-tailed test.

For example, suppose we form the CI of a sample mean this way: [X — t(5,1-«/2-.02)S% X —
t(n,1-a/2+.02)Sz]- This confidence interval is asymmetric about X, with the lower bound

farther away from the sample mean and the upper bound closer to the sample mean, having
different Type I error rates for the two “tails.” However, its coverage probability of the
population value is still 95%. A CI formed this way is valid in the coverage probability sense
but not valid in the hypothesis testing sense (unless different weights are placed on the tails,

or the test is one-tailed). In the present paper, we focus on using CI as a tool to identify
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values from which a sample estimate is significantly different.
Likelihood Ratio Test and LBCI

In SEM, there are several ways to test a parameter estimate. Suppose an arbitrary
structural equation model, M;, with g parameters, 0, is fitted to the data by maximum
likelihood (ML), with estimates 8. To test whether the estimate of a parameter, 6;, is
significantly different from zero at a = .05 (two-tailed), a likelihood ratio test (LR test, a 3’
test with df'= 1) can be conducted by comparing M; to a more restricted model, M,, with 6;
fixed to zero. This test is also called the * difference test because it is a general procedure to
test the difference between two models, one nested within another, in goodness of fit.
Although not common, the LR test can be used to test an estimate against other values.
Moreover, the LR test can also be used to compare two models, one with an equality
constraint imposed (Bollen, 1989). Therefore, the LR test can also be used to test functions of
parameters, such as standardized regression coefficients, correlations, and indirect effects
(e.g., Cheung, 2009a, 2009b; Falk, 2018; Falk & Biesanz, 2015; Pesigan & Cheung, 2020),
comparing M, to M, with the function of relevant parameters (e.g., an indirect effect) fixed
to zero in M.

If the LR test is appropriate, then a CI of a parameter can be formed by inverting the
LR test. The CI formed this way is called likelihood-based CI (LBCI, also called profile
likelihood CI in SEM, see Pritikin et al., 2017). A 100(1 — a)% LBCI is formed by inverting
the LR test to find two values, 6, and ), such that the LR tests when fixing the parameter
to these two values have p-values equal to a.

The LBCI has the advantage that it can be interpreted as in the simple case of #-based

CI for a sample mean: Values inside the interval are values from which 67] is not significantly
different based on the LR test, while 91 is significantly different from all values outside the

interval. If used to test against zero, the LBCI also tells exactly what a researcher wants to
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know when reading the p-value of an estimate: Whether the > difference test is significant if
a path or covariance is "removed" (the parameter fixed to zero).
Wald CI and Delta-Method CI

Although LBClI is easy to interpret, two other CIs, Wald CI and delta-method CI, are
much more popular in the applications of SEM. Following Pek and Wu (2015), we use Wald-
Type CI (WCI) to refer to both Wald CI and delta-method CI. Most popular SEM programs
report WCls for parameters and derived parameters (functions of parameters), such as
standardized coefficients and correlations. Using the example above, a 95% Wald CI is

formed using the standard error of 67]-, 53, and the value in the standard normal distribution
with (1 — a/2) of the area to the left, 1.96: [91- + 1.965@1,]. A 95% delta-method CI for a

derived parameter, h(6,), 6, being a subset of 8 (or 8 if all parameters are involved), is

formed by [h(0,) + 1.96s,], where s, = \/ h(é*)fg*h(é*)’ is the approximated standard

error of h(8,), £y, is the estimated sampling variances and covariances of 8,, and h(e,) =
0h(8.)/00; (Rao, 1973). Wald CI and delta-method CI are also formed by inverting a test.
Wald CI inverts the Wald test (Wald, 1943), which tests whether an estimate is significantly

different from 6, using Zp, = |67] -6, | / Sp; and the critical value from a standard normal
distribution (1.96 when o = .05). The case is the same for the delta-method CI, using zy 5 ) =

|h(§*) — hol /Sn- Therefore, like LBCI, WCl is also formed by inverting a test, and so the
interval are values from which a parameter is not significantly different, although the tests
being inverted are different.
Comparing LBCI and WCI in a Real Data Set

Although WCI and LBCI are asymptotically equivalent (Cox & Hinkley, 1974), they
can be different in finite samples, sometimes substantially. We can assess the similarity

between a Wald CI and an LBCI without actually finding the LBCI, but by checking the LR
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test p-values when fixing a parameter to one of its Wald CI bounds. We use the classic data
set by Holzinger and Swineford (provided in /avaan) as an example, fitting a three-factor
model on the nine variables, x1 to x9 (Figure 1) using ML estimation (source file
cfa_pvalues.Rmd)":

Table 1 shows the LR test p-values when a parameter is fixed to a bound of its 95%
Wald CI. The columns p-values are the LR test p-values comparing the fitted model to a
model with a parameter fixed to the lower bound or upper bound of its 95% Wald CIs. None
of the Wald CI bounds have p-values equal to .05, that is, none of the intervals coincide with
the corresponding LBClIs if they are formed. Some of the p-values are substantially higher or
lower than .05. For example, the upper bound of the factor loadings of x9 on speed ability is
1.378, with p = .229. This interval is too narrow and optimistic, excluding a wide range of
values above 1.378 from which the estimate 1.082 is not significantly different based on the
LR test. In sum, although formed by inverting the Wald test, the Wald CI cannot be
interpreted as such if we use LR test p-value as the criterion.

To illustrate why a delta-method CI may also lead to incorrect conclusions on the LR
test, we used as an example the data set from Tal-Or, Cohen, Tsfati, and Gunther (2010,
available in the psych package),> which is a popular dataset for illustrating simple mediation
(e.g., Hayes, 2022). They conducted an experiment to investigate whether a treatment would
influence reaction to a news story through presumed media influence (PMI). A simple
mediation model is fitted, with condition (where the stimulus was said to be presented in a
newspaper: front page = 1, interior page = 0) as the independent variable, PMI as the
mediator, and reaction as the outcome variable. The indirect effect (ab) is the product of the

path coefficient from condition to presumed media influence (a) and that from PMI to

! All source and output files are available at the OSF project for this manuscript: https:/osf.io/b9a2p/.
2 We thank the corresponding author for the permission to use this dataset for illustration.



https://osf.io/b9a2p/

LBCIIN R 9

reaction (b). The ML estimate is 0.241, and the 95% delta-method CI (default of lavaan) is
-.007 to .490. The indirect effect is not significantly different from zero by this CI. However,
if this model is compared to a model with the indirect effect fixed to zero, the p-value of the
LR test is .043. That is, the indirect effect is actually significantly different from zero using
the LR test (source file Tal Or pvalue.Rmd).

In sum, WCI can yield conclusions different from those by the LR test. A WCI can
include or exclude values from which the estimate is not significantly based on the LR test,
and the significant test conclusions by WCI and LR test can be different.

Why LBCI Should Be Used (If Available) Instead of WCI
WCI as an Approximation of LBCI

One may argue that Wald CI is a correct CI if we trust the Wald test because it is
formed by inverting the Wald test. If we test an estimate against the bounds of a 95% Wald
CI, then the Wald test p-values are necessarily .05. However, Pawitan (2001) argued that, if
LBCI and Wald CI are not similar, as in the examples above, LBCI is preferred, partly
because Wald CI and delta-method CI can be considered approximations of the LBCI.

We use the Holzinger-Swineford data set for illustration again. Suppose we want to
form the CI for the covariance between visual ability and speed ability, Gy,s. When estimated
by ML, the log-likelihood function, log L (@), is maximized when evaluated at 8, the ML
estimates (MLEs) of all free parameters, and 6,5 = 0.262 (Table 1). Following the
suggestion by Pawitan (2001), we scale the log-likelihood to be zero at MLEs when
visualizing the log-likelihood. We then plot the log-likelihood by fixing Gy ¢ to values near its
MLE and maximize the log-likelihood with respect to other parameters (Figure 2),
log L(oys) = log L(GVS, Gq), where 6, are other parameters in € (Pawitan, 2001). This is
called the log profile likelihood of oy 5 (source file cfa. Rmd).

The solid blue line is the plot of the log profile likelihood of 6y, from 0.162 to 0.382,
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peaking at 0.262 which is the MLE of o5. The decrease in log profile likelihood is 1.92 at
these two points, half of 3.84, the critical value of x> with df = 1. The LR test statistic when
testing oy against an arbitrary value oy is given by 2[log L(@) —log L(oy5) ] Therefore,
the p-values of the LR tests fixing oy to 0.162 or 0.382 is .05. In other words, the estimated
covariance of 0.262 is just significant from 0.162 and 0.382, not significantly different from
0.162 to 0.382, and significantly different from values less than 0.162 or greater than 0.382.
This interval is the 95% LBCI of Gy5. Note that the log profile likelihood is curved and
slightly asymmetric for o5 in this example.

Instead of fitting the model many times to plot the log profile likelihood in a range of

values, a quadratic approximation of the log profile likelihood of o5 can also be formed by
log L(oys) =~ logL(0) — 0.5(5§VS)_1(0V5 — Gys)? using Taylor’s expansion, where s3, is
the diagonal element corresponding to oy in the inverse of Fisher information matrix 1(8),
and sg, . is the standard error of Gy (Pawitan, 2001). In practice, whether the expected or
observed information is used depends on the data and other factors (e.g., whether missing

data is present or not, see Savalei, 2010). In the above example, with complete data, the

expected information matrix is used, the default option in lavaan. The LR test is conducted
by using 2[log L(8) —logL(o}s)] and a 1-dfy? distribution. Therefore, (sév S)_l(cvs -
Gys)? is the approximated test statistic, and the test is equivalent to finding the p-value of
|Gys — oysl/ss,¢ in a standard normal distribution, which is the Wald test used to form the
Wald CI. The dotted red line in Figure 2 is a plot of this quadratic approximation, and the
interval at log profile likelihood = -1.92, 0.152 to 0.373, is the Wald CI of Gy.
Numerically, the two intervals may look similar. However, their differences are in the

p-values of the bounds. The LR test p-values of the LBCI is .05 at its bounds because it is

formed by inverting the LR test. This is not necessarily the case for Wald CI because Wald
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test is an approximation of the LR test. In this example, the Wald CI is shifted to the left.
Based on the LR test, the sample estimate Gy is not significantly different from some values
within the left end of the Wald CI (from 0.152 to 0.162) and some values outside the right
end of it (from 0.373 to 0.382). Different from how we want a CI behaves, we cannot say that
Oy 1s not significantly from all values within the Wald CI based on the LR test. Although the
conclusion is the same if we only want to test whether Gy is significantly different from
zero, when one bound of a Wald CI is close to zero, which is not uncommon, LBCI and Wald
CI may lead to different conclusions because one interval includes zero while the other does
not. In this case, LBCI, if available, should be used to test a null hypothesis.

The same phenomenon applies to delta-method CI because it can also be treated as an
approximation of the log profile likelihood when a function of parameters, such as a
correlation, is fixed to a value (Pawitan, 2001). The log profile likelihood of the indirect
effect and its quadratic approximation in Tar-Or et al. (2010) are plotted in Figure 3 (source
file Tal Or no_boot.Rmd). The asymmetry of the log profile likelihood is more apparent,
with the LBCI wider but did not include zero, showing that the delta-method CI, the interval
defined by the blue dotted line, may not approximate the log profile likelihood well, leading
to a conclusion different from that by the LR test and LBCI.

WClI is Not Invariant to Transformation and Reparameterization, while LBCI is

Another problem with WCI and Wald test is their dependence on transformation and
reparameterization (Gregory & Veall, 1985). For example, Gonzalez and Griffin (2001)
showed that the Wald test p-value of a factor covariance may depend on which loading of the
indicators of a factor is fixed to one. Different ways to formulate a hypothesis can result in
different p-values for the Wald test, and consequently different WCI because it is formed by
inverting the Wald test. The LR test and LBCI are invariant to reparameterization and

transformation (Pawitan, 2001).
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Comparing LBCI with BCI

Although not used as the default CI, a popular CI method for some parameters, such
as derived parameters like indirect effects presented above, is bootstrapping CI (BCI). There
are many variants, and we focus on nonparametric percentile bootstrapping (NPCI), a
common method for forming CI for an indirect effect (e.g., in the PROCESS macro by
Hayes, 2022). In NPCI for SEM, for a sample of size n, B bootstrap samples of the same size
are drawn with replacement. The original model is then fitted to each of the bootstrap
samples, and the parameter of concern is estimated in each bootstrap sample, yielding B
bootstrap estimates. The 100(1 — a)% NPCI is formed by finding the 100(a/2)™ and
100(1 — a/2)™ percentiles of the bootstrap estimates. NPCI is usually used when (a) the
distributional assumption of the estimators (e.g., multivariate normality for ML) may be
violated, or (b) the sampling distribution of a parameter is unknown or complicated.

NPCIl is similar to LBCI because both methods do not assume symmetry in the
uncertainty about the point estimate, making them appropriate choices for derived parameters
such as indirect effect and standardized parameters like correlations. NPCI has the added
advantage that it makes no distributional assumption on the raw data. LBCI is valid only if
the likelihood function is not misspecified, and so multivariate normality is still needed to use
LBCI for ML estimates (but see Falk, 2018, on a robust version of LBCI, discussed later).

Despite the advantages of NPCI over LBCI, it has two disadvantages. First, it is
computationally intensive, requiring fitting a model a large number of times (B8 must be large,
at least 2000 while 5000 is common). Although repeated model fitting is also required in
forming LBCI, as implied in the plot of log profile likelihood above, it usually requires much
less computational time. Second, NPCI is a resampling method and so the CI will change as
the set of bootstrap samples changes, adding one more level of sampling variability. This

variability can be decreased but at the cost of increasing B. Moreover, if a bound is close to
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zero, a large B is required to achieve results that depend little on the set of bootstrap samples.
In the Tal-Or et al. example above, we formed NPCI for the indirect effect 100 times, with B
= 5000, 10000, and 20000 (source file Tal Or_boot.Rmd). When B = 5000, 9% of the NPClIs
included 0. When B increased to 10000, 3% of the NPCls included 0. All NPCIs agree (do
not include 0) when B is 20000. In practice, researchers may stop at B = 5000, not being
aware that a larger number of B is needed. LBCI, though without a closed-form solution, is
fixed and there is no additional source of uncertainty due to resampling, unlike NPCI, , other
than what is due to optimization.
Robust WCI and Robust LBCI

When the assumption of multivariate normality is not tenable, several robust versions
of WCI (R-WCI) are available. The principle is similar in all common approaches: the
estimated variance-covariance matrix is adjusted for potential deviation from multivariate
normality and the adjusted variance-covariance matrix is used to form the WCI (see Savalei,
2014, for an overview). This approach cannot be used for LBCI because it is not computed
from the variance-covariance matrix. Falk (2018) proposed a simple approach to from a
robust LBCI. Because LBCI is formed by inverting the LR test, robust LBCI can be formed
by inverting the scaled y? test developed by Satorra (2000). This test is readily available in
lavaan through lavTestLRTs() with method set to "satorra.2000". Therefore, the
100(1 — a)% robust LBCI of a parameter is found by finding the two values that will result
in Satorra-2000 LR test p-values equal to « if the parameter is fixed to one of these two
values. The procedure is the same for derived parameters such as standardized coefficients
and indirect effects. Falk empirically compared robust LBCI with other methods across a
wide variety of conditions and found that robust LBCl is a viable CI procedure when
violation of multivariate normality is suspected. In semlbci, this approach is adopted to form

a robust LBCI (details on the implementation presented later).
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Why LBCI is Rarely Used in SEM in Some Disciplines

We believe there are three major reasons that LBCI is rarely used in the applications
of SEM in some disciplines. First, researchers may believe that LBCI and WCI are similar.
We demonstrated that this is not the case even in a popular dataset. Second, when WCI is not
suitable, researchers may resort to bootstrapping CI. Bootstrapping CI indeed performed well
in many situations (e.g., Falk, 2018). However, LBCI is also a viable alternative in these
situations, especially when the computational cost required to reduce the resampling error in
bootstrapping ClI is too great to use it repeatedly except in the final stage of a series of
analyses. The third major reason is the lack of tools. LBCI is not available in most of the
popular SEM software packages. OpenMx (Neale et al., 2016) has good support for the LBCI,
and users can request them for virtually any parameters. However, at the time of writing,
Amos (Arbuckle, 2021), lavaan (Rosseel, 2012), and Mplus (Muthén & Muthén, 2017) do not
support the LBCI. Users need to find them manually (e.g., Asparouhov, 2020). To overcome
this problem and let more researchers have the option to use LBCI, we developed semlbci, an
R package for forming LBCI for parameters in a model fitted by SEM in /lavaan. We first
illustrate how to use sem/bci which is relevant to most users, and then discuss major technical
details on the implementation for interested readers. The package can be downloaded from

the OSF page for this manuscript (https://osf.io/b9a2p/) or installed from GitHub

(https://sfcheung.github.io/semlbci/).

How to Use semlbci to Form LBCI
Workflow
The package was designed to allow users to form the LBCI for model parameters
without learning a new package to do SEM. It currently supports lavaan, one of the most
popular SEM packages in R (R Core Team, 2022). The workflow is simple: (1) Researchers

fit their models, as usual, using /avaan, and (2) pass the fit object from lavaan to semlbci and
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specify parameters for which LBCI are to be formed. The output is similar to the output of
parameterEstimates() for original estimates and standardizedSolution() for standardized
estimates, to reduce the need to learn reading a new output format. In the following sections,
we illustrate how semlbci can be used in different scenarios. The source files and PDF files of
the output of all the illustrations can be found in the folder examples of the OSF page

(https://osf.io/b9a2p/files/osfstorage).

Free Parameters and Derived Parameters in a Simple Mediation Model

A simple mediation model is fitted to the dataset simple med, included in semlbci:
fit <- sem(model = mod, data = simple med, fixed.x = FALSE)

This is an excerpt of the original parameter estimates results from lavaan:

lhs op rhs label est se z pvalue ci.lower ci.upper
m ~ X a 1.676 0.431 3.891 0.000 0.832 2.520
y o~ m b 0.470 0.074 6.354 0.000 0.325 0.616
y oo~ X 1.540 0.468 3.291 0.001 0.623 2.457
ab := a*b ab 0.789 0.238 3.318 0.001 0.323 1.254

To form the LBClIs for all free parameters and the indirect effect ab, call the function

semlbci() (source file med.Rmd):
fit lbci <- semlbci (fit)

By default, LBCIs are formed for all free parameters and derived parameters, except
for variances and error variances because these Cls are rarely reported, and researchers rarely
test whether they are significant or not. To include them, add remove variances = FALSE.

The output is a semlbci-class object. This is an excerpt of the default printout:

lhs op rhs label est lbci 1b 1lbci ub 1b ub cl 1b cl ub
m ~ a 1.676 0.828 2.525 0.832 2.520 0.950 0.950
y ~ m b 0.470 0.325 0.616 0.325 0.616 0.950 0.950
y ~ X 1.540 0.618 2.461 0.623 2.457 0.950 0.950
ab := a*b ab 0.789 0.370 1.313 0.323 1.254 0.950 0.950

The LBClIs are [lbci_Ib, Ibci_ub]. For comparison, the original Cls are also printed
(Wald ClIs for free parameters and delta-method CI for the indirect effect). The columns ¢/ b
and c/_ub are the achieved levels of confidence of the bounds (the LR test p-value if a

parameter is fixed to a bound), which should be close to the level of confidence of the


https://osf.io/b9a2p/files/osfstorage
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intervals (.95 for a 95% confidence interval). As expected, LBClIs and the original Cls are
close to each other for the path coefficients, suggesting that the quadratic approximation is
good. However, the lower bound of the indirect effect (.370) is closer to the point estimate
and farther away from zero. As shown in the supplementary file with full output (med.html),
if ab is fixed to the lower bound of LBCI (.370), the LR test p-value is .05. If fixed to the
lower bound of Wald CI (.323), the p-value is .028, showing that the lower bound is farther
away from the point estimate than it should be.
Standardized Estimates

LBCIs for parameter estimates in the standardized solution, such as standardized path
coefficients, correlations, and standardized indirect effects can also be formed using semlbci.

This is an excerpt of the standardized solution results:

lhs op rhs label est.std se z pvalue ci.lower ci.upper
m ~ X a 0.265 0.066 4.035 0.000 0.136 0.394
y o~ m b 0.403 0.059 6.863 0.000 0.288 0.518
y oo~ X 0.209 0.062 3.346 0.001 0.087 0.331
ab := a*b ab 0.107 0.031 3.463 0.001 0.046 0.168

Note that the CIs in the standardized solution is delta-method CIs and are symmetric
around the point estimates, including the standardized indirect effect. To form the LBClIs for

the standardized solution, just add standardized = TRUE:
fit lbci std <- semlbci(fit, standardized = TRUE)

This is an excerpt of the output:

lhs op rhs id label est.std lbci 1b lbci ub 1b ub cl 1b cl ub
m ~ x 1 a 0.265 0.132 0.389 0.136 0.394 0.950 0.950
y ~ m 2 b 0.403 0.283 0.512 0.288 0.518 0.950 0.950
y ~ x 3 0.209 0.084 0.328 0.087 0.331 0.950 0.950
ab := a*b 7 ab 0.107 0.051 0.173 0.046 0.168 0.950 0.950

The sampling distribution of the standardized solution is not expected to be
symmetric, and more so for the standardized indirect effect. Delta-method Cls are symmetric
for all the standardized estimates, while the LBClIs take into account possible asymmetry.
The lower bound of the LBCI of the indirect effect (.051) is again farther away from zero and

closer to the point estimate, though the magnitude is smaller on the standardized metric. As in
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the case of the original estimates, all the bounds achieved the desired level of confidence.
That is, if a standardized parameter is fixed to this bound, the LR test p-value is .05.
A Confirmatory Factor Analysis (CFA) Model

The function semlbci() can also be used to form the LBCIs for factor loadings and
factor covariances in a CFA model. We use the Holzinger-Swineford dataset as an example

again. First, fit the model as usual:

mod <-'visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9'

fit <- cfa(model = mod, data = HolzingerSwinefordl939)

To form the LBClIs for all free parameters except for variances and error variances,
simply pass the fit object to semlbci() as before. This model has 21 free parameters, and the
search can be slow. To speed up the search, researchers can add parallel = TRUE to enable

parallel processing, and use ncpus to set the number of cores to use (source file cfa. Rmd):
fit lbci <- semlbci (fit, parallel = TRUE, ncpus = 6)

Running on a system with Intel Core 17-8700 with this setting took about 16 seconds.

This is an excerpt of the results:

lhs op rhs est lbci 1b lbci ub 1b ub ratio 1 ratio u
visual =~ x2 0.554 0.356 0.793 0.358 0.749 1.013 1.224
visual =~ x3 0.729 0.520 0.996 0.516 0.943 0.977 1.245

textual =~ x5 1.113 0.992 1.249 0.985 1.241 0.946 1.062
textual =~ x6 0.926 0.821 1.044 0.817 1.035 0.966 1.082

speed =~ x8 1.180 0.923 1.536 0.857 1.503 0.795 1.101

speed =~ x9 1.082 0.782 1.655 0.785 1.378 1.011 1.934
visual ~~ textual 0.408 0.262 0.577 0.264 0.552 1.017 1.173
visual ~~ speed 0.262 0.162 0.382 0.152 0.373 0.909 1.090
textual ~~ speed 0.173 0.083 0.281 0.077 0.270 0.932 1.112

The LBClIs for some of the loadings are substantially different from Wald ClIs. If the
ratio of the distance from the point estimate to an LBCI bound to that from the point estimate
to the corresponding original CI bound is larger than a threshold (1.5 by default), two new
columns will be displayed, ratio [ and ratio _u. The ratio is 1.934 for the upper bound of the
factor loading of x9, (1.655 - 1.082) / (1.378 - 1.082) = 1.934. As shown in Figure 4, the
quadratic approximation is poor for this factor loading. The Wald CI is too narrow.

Standardized Factor Loadings and Factor Correlations
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To form the LBCIs for standardized factor loadings and factor correlations, simply
add standardized = TRUE. However, the search for the LBClIs of standardized estimates can
be slow for a model with many free parameters. Therefore, parallel processing is
recommended, or the LBCIs are only formed for parameters with which the magnitudes of

the standardized estimates will be interpreted.
fit lbci std <- semlbci(fit, parallel = TRUE, ncpus = 6, standardized = TRUE)

Running on a system with Intel Core 17-8700 took about 13 seconds. Note that
variances and error variances are removed by default. Therefore, only the LBCIs for 12
parameters (9 standardized factor loadings and 3 factor correlations) will be formed. This is

the output for the factor correlations:

lhs op rhs id est.std lbci 1lb lbci ub 1b ub cl 1b cl ub
visual ~~ textual 22 0.459 0.326 0.575 0.334 0.584 0.950 0.950
visual ~~ speed 23 0.471 0.300 0.633 0.328 0.613 0.950 0.950
textual ~~ speed 24 0.283 0.139 0.418 0.148 0.418 0.950 0.950

The LBClIs for the three factor correlations are close to the delta-method Cls except
for that of visual-speed correlation. The LBCI of visual-speed correlation is wider than the
delta-method CI. Again, the LBCIs correctly reflect the expected asymmetry of the
distribution of correlations, with the bounds away from zero closer to the point estimates, and
the other bounds closer to zero.

Latent Level Mediation

Functions of parameters are also supported for a model with latent variables. We use
the sample dataset mediation latent, provided with semlbci, for illustration. It has nine
variables loaded on three factors: x1 to x3 on fx, x4 to x6 on fm, and x7 to x9 on fy. The effect

of fx on fy is mediated through fm, with a direct path from fx to fy included:

mod <- 'fx =~ x1 + x2 + x3
fm =~ x4 + x5 + x6
fy =~ x7 + x8 + x9
fm ~ a * fx
fy ~b * fm + cp * fx
ab := a*b'

fit <- sem(model = mod, data = mediation latent)

The call to find the LBCI of the indirect effect is similar to that in previous examples.



LBCIIN R 19

To specify a derived parameter, use the same syntax in /avaan but omit the definition after
":=". The standardized latent indirect effect can be found by adding standardized = TRUE

(source file med lav.Rmd):

fit lbci <- semlbci(fit, pars = "ab := ")
fit lbci std <- semlbci(fit, pars = "ab := ", standardized = TRUE)

These are the results:

Unstandardized
lhs op rhs label est lbci 1b lbci ub 1b ub cl 1b cl ub
ab := a*b ab 0.115 0.016 0.247 0.007 0.222 0.950 0.950
Standardized
lhs op rhs label est.std lbci 1lb lbci ub 1b ub cl 1b cl ub
ab := a*b ab 0.115 0.017 0.227 0.015 0.214 0.950 0.950

The latent indirect effect is .115, with 95% delta-method CI .007 to .222 and 95%
LBCI .016 to .247. The standardized indirect effect is also .115, with 95% delta-method
CI.015 to .214 and 95% LBCI .017 to .227. The log profile likelihood functions (Figure 5)
are asymmetric as expected, with the delta-method Cls too narrow compared to the LBCI it
approximates.

For comparison, 95% NPCIs were also formed, with 5000 bootstrap samples. The
95% NPCI of the latent indirect effect is .008 to .255, wider than both delta-method CI and
LBCI. The 95% NPCI of the standardized latent indirect effect is .009 to 241, again wider
than both other Cls. The sample dataset was generated from a multivariate normal
distribution and so the LBCI based on ML is valid and preferred in this example.
A Multisample Model

Multisample models with or without between-group equality constraints are also
supported. We use the Holzinger and Swineford dataset again as an example and use school

as the grouping variable:

mod <- 'wvisual x1 4+ c(lambda2, lambda?2)*x2 + c(lambda3, lambda3) *x3

textual =~ x4 + c(lambdab, lambdab)*x5 + c(lambda6, lambda6) *x6
speed =~ X7 + c(lambda8, lambda8)*x8 + c(lambda9, lambda9)*x9'
fit <- cfa(model = mod, data = HolzingerSwinefordl939,
group = "school")

The factor loadings are constrained to be equal across groups and so LBCIs can be
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formed for only one set of them. To do this, we can specify the parameters for which LBCls
will be formed using the pars argument. Users can form a vector of strings using lavaan

model syntax, and "multiply" the right-hand side by the group number:

free loadings <- c("visual =~ 1*x2", "visual =~ 1*x3",
"textual =~ 1*x5", "textual =~ 1*x6",
"speed =~ 1*x8", "speed =~ 1*x9")

Alternatively, they can be specified as a usual lavaan model:

free loadings <- "visual =~ 1*x2 + 1*x3
textual =~ 1*x5 + 1*x6
speed =~ 1*x8 + 1*x9"

The first approach is easier to read while the second approach is more compact.
fit lbci loadings <- semlbci (fit, pars = free loadings, parallel = TRUE, ncpus = 6)

Running on a system with Intel Core 17-8700 took about 34 seconds. These are part of

the results:

lhs op rhs group est lbci 1b lbci ub 1b ub cl 1b cl ub
visual =~ x2 1 0.599 0.396 0.847 0.402 0.795 0.950 0.950
visual =~ x3 1 0.784 0.573 1.064 0.573 0.996 0.950 0.950
textual =~ x5 1 1.083 0.958 1.225 0.951 1.215 0.950 0.950
textual =~ x6 1 0.912 0.802 1.037 0.798 1.025 0.950 0.950
speed =~ x8 1 1.201 0.953 1.536 0.897 1.506 0.950 0.950
speed =~ x9 1 1.038 0.771 1.494 0.771 1.304 0.950 0.950

The achieved level of confidence is .95 for all confidence bounds.
Standardized Factor Correlations

Forming the LBClIs for parameters in the standardized solution for a multisample
model with equality constraints can be substantially slower. Therefore, they can be formed
just for parameters that will be interpreted, such as the factor correlations. Again, to select the
factor correlations, we can use lavaan model syntax. For a multisample model, if the group

number is not specified, then LBCIs will be formed for the parameter in all groups.

fit lbci fcor <- semlbci (fit,
pars = c("visual ~~ textual", "visual ~~ speed", "textual ~~ speed"),
parallel = TRUE, ncpus = 6, standardized = TRUE)

Running on a system with Intel Core 17-8700 took about 50 seconds. These are parts

of the results:

lhs op rhs group id est.std lbci 1lb lbci ub 1b ub cl 1b cl ub
visual ~~ textual 1 22 0.485 0.291 0.640 0.315 0.654 0.950 0.950
visual ~~ speed 1 23 0.340 0.097 0.565 0.118 0.563 0.950 0.950
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textual ~~ speed 1 24 0.333 0.127 0.519 0.138 0.529 0.950 0.950
visual ~~ textual 2 58 0.540 0.357 0.692 0.373 0.708 0.950 0.950
visual ~~ speed 2 59 0.536 0.319 0.725 0.352 0.719 0.950 0.950

textual ~~ speed 2 60 0.345 0.143 0.524 0.166 0.523 0.950 0.950

The sampling distribution of correlations is expected to be skewed toward zero.
LBClIs correctly reflect this. All the lower bounds of LBCIs of the factor correlations are
closer to zero, and less biased than the overoptimistic delta-method CIs which assume a
symmetric distribution.
Robust LBCI

Robust LBCI using the method proposed by Falk (2018) is also supported in semlbci.
We used the latent level mediation model again but used the dataset mediation_latent skewed
provided with semlbci. The variables were generated from a population with indicator error
terms that are exponentially distributed. The latent level mediation model is fitted using MLR

as the estimator in /avaan (source file med lav_nnorm.Rmd):

fit <- cfa(model = mod, data = mediation latent skewed, estimator = "MLR")

To form the robust LBCIs, add robust = "satorra.2000". Currently, only the method

proposed by Falk (2018) using the robust LR test by Satorra (2000) is supported.

fit lbci <- semlbci(fit, pars = "ab := ", robust = "satorra.2000")
fit lbci std <- semlbci(fit, pars = "ab := ", robust = "satorra.2000",
standardized = TRUE)

This is an excerpt of the output:

Unstandadized:
lhs op rhs label est lbci 1b lbci ub 1b ub cl 1b cl ub robust
ab := a*b ab 0.057 0.004 0.128 -0.002 0.116 0.950 0.950 satorra.2000
Standardized:
lhs op rhs label est.std lbci 1lb lbci ub 1b ub cl 1b cl ub robust
ab := a*b ab 0.071 0.009 0.146 0.005 0.138 0.950 0.950 satorra.2000

Note that the columns /b and ub are the confidence intervals based on robust standard
errors in the original output. All columns are interpreted as before, except that the columns
Ibci_Ib and Ibci_ub are the bounds of robust LBCIs, and ¢/ _[b and ¢/ _ub are one minus the p-
values of the y? difference test by Satorra (2000) when fixing the parameters to their

confidence bounds. Robust LBCI is also supported for all previous scenarios, such as
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multisample models and path models with only observed variables.

For comparison, 95% NPCIs were also formed for the latent indirect effect. The 95%
NPCI of the unstandardized indirect effect is .008 to .138, and that of the standardized
indirect effect is .010 to .152. Both LBCIs and NPClIs are close to each other and yield the
same conclusion for both unstandardized and standardized latent indirect effects. However,
ran on Intel Core 17-8700 with six cores, NPCIs took about 96 seconds while LBCI only took
about six seconds with two cores (one for each bound). The delta-method Cls based on the
robust variance-covariance matrix, on the other hand, are narrower than both LBCIs and
NPClIs, and suggest the unstandardized latent indirect effect is nonsignificant.

Implementation

Algorithms

The 95% LBCI can be formed manually in any SEM software package by fixing a
parameter or a function of parameters to different values until two values, one smaller and
one larger than the point estimates are found that yield 1-df LR test p-values of .05. The
challenge is to do this efficiently and automatically. As reviewed by Pek and Wu (2015),
there are several algorithms to form the LBCI. In SEM, the algorithm proposed by Neale and
Miller (1997) is a popular one, used as the default in OpenMx and in the simulation studies by
Falk (2018). Another algorithm was proposed by Wu and Neale (2012), also implemented in
OpenMx. Although Wu and Neale originally proposed the algorithm to form LBCI for
bounded parameters (free parameters with attainable bounds), we did not include their steps
for bounded parameters and only adopted the general algorithm illustrated by Pek and Wu
(Equation 12), which is applicable to other parameters and functions of parameters. We call
this algorithm the WNPW algorithm.

When developing an LBCI package for lavaan, we adopted two goals. First, we

wanted to use only information exported by /avaan whenever possible, such that it is more
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likely to be compatible with future versions of lavaan. Second, we wanted to use as many
functions exported by lavaan as possible, to ensure that the results are consistent with those
by lavaan. This is because one of the checks of a bound is to check the p-value of the LR test
between the original model and a model with the target parameter or function of parameters
constrained to this bound, and this test is to be conducted by the lavaan. These two goals also
allow for possible expansion to other SEM packages in the future if they export similar
information and functions. We tried the approach by Neale and Miller (1997) in an earlier
version of sem/bci. However, we found that it is easier to program using the WNPW
algorithm if we want to achieve these two goals. Therefore, we developed the package based
on this algorithm (see the Online Appendix of Pek & Wu, 2015, for an example of this
algorithm in OpenMx).

The implementation of robust LBCI was inspired by the work of Falk

(https://github.com/falkcarl/lavaan). Different from his work, we developed a separate

package instead of proposing changes in /avaan. Therefore, we adopted Falk's application of
Satorra's (2000) LR test to form robust LBCI but implemented it using Pek and Wu's (2015)
version of Wu and Neale (2012). For optimization, the package nloptr (Ypma et al., 2022, an
R interface to NLopt by Johnson) was adopted, using the SLSQP algorithm (Kraft, 1994) as
the default algorithm. We present briefly the implementation below. The full technical details
can be found in technical appendices at the OSF project page for this manuscript

(https://osf.i0/b9a2p/).

LBCI

To find the lower bound 8, of the 100(1 — a)% LBCI of éj, 0, is minimized with
respect to all parameters (6,,0,), 8, being all parameters other than 6, subject to the
constraint F (HL, Bq) =F (@) + X11_o/2n, where F (@) is the value of the discrepancy

function evaluated at ML estimate 8, Xil—a is the x? critical value at df = 1 and level of
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significance = a (about 3.84 with o = .05), and 7 is the sample size (total sample size in
multisample models). To find the upper bound, 8, —8 is minimized (equivalently, 8, is
maximized). We used 27 is because it is how the model x? is computed from the value of the
discrepancy function in lavaan (the output of lavaan: :fitMeasures() with what = "fmin").>
This algorithm has two advantages. First, it is easy to program (Pek & Wu, 2015). As long as
an SEM program returns the discrepancy function value for user-supplied estimates, any
optimization function that allows for equality constraints can be used to find the confidence
bound. As an example, our implementation is a generalization of the examples in OpenMx by
Pek and Wu to lavaan. Second, it can be extended to a function of parameters h(@), such as a
standardized path coefficient or a correlation, by minimizing h(0) with the aforementioned
constraint (note that the derived parameter may depend only on some elements in 8). For a
model with equality constraints, they are simply included as additional equality constraints in
the optimization.
Robust LBCI

Robust LBCI is formed similarly but the Satorra (2000) LR test is used as proposed
by Falk (2018), which is natively supported in /avaan. The principle is the same: search for
the 95% LBCI bounds for a parameter by finding values to which the Satorra (2000) LR test
p-values are .05 when fixing the parameter to these bounds, without the need to know how to
adjust the y2. The procedure proposed by Falk can be readily generalized to multisample
models in lavaan because lavaan supports doing the Satorra LR test for multisample models,
and sem/bci uses this test to form robust LBClIs and check their validity. For a multisample
model with m samples, when constraining a function of all parameters, hy(0), to a value in

the more restricted model, the scaling factor can be estimated by (Satorra, 2000, Equation

3 This is not the case if the argument likelihood is set to "wishart”. In the current version, semlbci() will not run
on a model fitted with likelihood set to "wishart".
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where f; = n;/n, n; is the sample size of the jth sample, 7 is the total sample size, W is the
weight matrix (the inverse of the estimated asymptotic covariance matrix of sample statistics
assuming multivariate normality) in the jth sample, I}" is the asymptotic distribution-free
estimate of the covariance matrix of the sample statistics in the jth sample (Browne, 1984),
A; = 0s;/00’ evaluated at 0, s; is the sample statistics in the jth sample, ho (9) =
dhy(0)/00' evaluated at 8, and P = A’'WA (Satorra, 2000, p. 239). For one-sample models,
¢ is equivalent to Equation 10 in Falk (2018) with one equality constraint. When finding the
LBCI for a free parameter 6;, ho(8) = 6;. When finding the LBCI for a derived parameter
h(0), hy(8) = h(0). The lavTestLRT() in lavaan uses the method proposed by Asparouhov

and Muthén (2010) when Satorra (2000) LR test is used. Therefore, the critical value is

4 This is how Satorra's (2000) method is implemented in lavTestLRT() of lavaan (version 0.6-13).
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adjusted to X*il_a =a'(x¥?,_¢ —b), where a = 1/tr(M?) and b = 1 — tr(M) /tr(M?), M

depends only on the fitted model and hy(8).> After the adjusted critical value is computed,

the confidence bound can be found as described above with the critical y? in the constraint

2

replaced by X*7 ; _

. The validity of a bound of robust LBCI can be verified by doing an LR

test using lavTestLRT() with method = "satorra.2000" and A.method = "exact” (because the
two models are necessarily nested in the parameter sense).
Validity Checks

Because a closed-form solution for LBCI is not available, the bound found needs to
be checked for reasonability (Pritikin et al., 2017). In semlbci, the following three checks are
conducted for each bound found before returning the results:

1. The optimization function nloptr() returns a code of "0" (success).

2. The values of the free parameters at the solution (8) do not result in an inadmissible
solution as defined by the SEM function, /avaan in semlbci. This is done by
lavaan::lavinspect() with what = "post.check™").

3. The p-value of the LR test between the original model and a model with the target
parameter constrained to the bound is close enough to 1 — level of confidence of the
requested interval (.05 for a 95% LBCI) within a tolerance (default is 0.0005)°.

A bound certainly should pass the third check to be a valid bound of LBCI because
this is the defining characteristic of a bound of LBCI. However, to be conservative, only a
bound that passes all three checks will be returned. If a bound found in the first attempt fails
any of these checks, semlbci() will try "harder" several times using different settings (e.g.,
different tolerance values for convergence, different starting values). If it still fails at least

one of the checks, after a certain number of attempts, NA (not available) will be returned. We

5 In future versions of semlbci, we can use lavaan to compute a and b directly because they are exported by
lavTestLRT() in the latest version of lavaan at the time of writing (0.6-13).
® This value can be changed by users for higher precision in the search.
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cannot "prove" that a bound passing all checks is valid, which is impossible due to the nature
of LBCI (Meeker & Escobar, 1995). Nevertheless, by imposing these checks, we believe it
can at least reject bounds that are suspicious.

In addition to these checks, based on the suggestion by Pritikin et al., 2017, semlbci
also computes the ratio of the distance of a bound from the point estimate to the distance of
the corresponding Wald CI or delta-method CI from the point estimate, to detect whether a
bound is too far or too close to the point estimate compared to the Wald CI bound. If the ratio
is at 1.5 or above or 1/ 1.5 or below (the default”), the bound will still be returned but a note
will be included in the printout, alerting the users to check the bound for plausibility.
Comparing Results with OpenMx

Although the algorithms used are not new and the definitional validity of an LBCI can
be checked by the LR test, we also conducted a small-scale simulation study to compare the
LBClIs by semlbci with those by OpenMx, to check whether semlbci works as expected. A
simple mediation model identical to that in the previous example was used to generate the
data, with a path and b path equal and ¢' path fixed to zero. Four levels of values for the a
path and b path were examined: .00, .10, .30, and .50. The sample sizes examined were 100
and 300. Each condition had 2000 replications. The LBCIs of sem/bci and OpenMx for the a
path (unstandardized and standardized), the indirect effect (ab, unstandardized and
standardized), and the error variance of y were compared. They yield LBCIs with negligible
differences across all the replications and have similar coverage probabilities across
conditions. The full details of the simulation study can be found at the folder simulation at the

OSF page for this manuscript (https://osf.io/b9a2p/files/osfstorage).

When To Use LBCIs?

Despite the advantages of LBCIs, we are not advocating the use of LBClIs

7 This ratio can be changed by users.
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unconditionally because (a) the WCls can approximate the likelihood function very well in
some cases, and (b) forming LBCIs can be difficult in some models and for some parameters
due to the lack of a closed-form solution. Although the LBCls could be formed quickly in the
previous examples, we encountered cases in which the search took more than one minute or
even failed. Therefore, we suggest running semlbci() with the default settings first and
parallel processing enabled. If LBCIs can be formed for all free parameters (error variances
and variances excluded by default), then LBCIs should be reported instead of WCls because
WCls are approximations of the LBCls. If it takes too long to run or the search for confidence
bounds fails for some parameters even after tweaking the options of the optimizer, then
researchers can use sem/bci() to form LBCIs only for major parameters for which asymmetry
in the likelihood function is suspected, such as standardized path coefficients, indirect effects,
and correlations, because this is when the quadratic approximation by WCl is likely to be
poor. If necessary, researchers can tweak some technical options in the search (described in
the help documents and the technical appendices). However, this is usually not necessary
because semlbci() internally will try adjusting some options, including randomizing the start
values, if the initial search fails. The easiest option is to set try_k _more_times to an integer
higher than 2 (the default value), telling the function to do more attempts.

If researchers deemed that bootstrapping Cls are more appropriate for a parameter or
a derived parameter, the LBCIs or robust LBCIs can still be used as proxies if the
computation cost of bootstrapping Cls is high. During the model selection and comparison
stage, LBCIs can be used for hypothesis testing and interval estimates. Once the final model
has been selected, NPClIs can be formed for selected parameters for the final results.

A Cautionary Note on Using LBClIs
Despite the advantages of LBCIs over WCls, like all confidence interval methods,

their performance such as coverage probabilities cannot be taken for granted. As found by
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Falk (2018), even percentile bootstrap CI, which outperformed many methods investigated,
LBCI included, may still perform poorly in some conditions. Therefore, our goal is to provide
one more option for researchers to form Cls for parameter estimates. Researchers still need to
justify their choice of a method, ideally based on previous empirical findings. Note that this
also holds for bootstrapping. Bootstrapping Cls can be formed for virtually any parameter
estimates easily (e.g., using bootstrapLavaan() in the lavaan package) but its appropriateness
cannot be taken for granted (Yung & Bentler, 1996). With semlbci, researchers interested in
comparing the performance of LBCI with other methods can have one more option in the
choice of SEM package.
Limitations and Future Development

The LBCI, formed by inverting the LR test, is only "as good as" the LR test. First, we
took a defensive approach in developing sem/bci and the current version will only accept a
model fitted by ML, generalized least squares (GLS), or asymptotic distribution-free (ADF)
method (called WLS in /avaan) (including their variants in lavaan, such as MLR, MLM, etc.)
with missing data. Second, multilevel models are also currently not supported. Development
is ongoing to support multilevel models. Last, sem/bci does not yet support the adjustment for
bounded parameters proposed by Wu and Neale (2012) when a point estimate is close to a
boundary. This should not be a problem in most typical cases but may be relevant when
correlations close to one or variances close to zero are possible. In the current version, the
algorithm should fail because a valid bound cannot be found without failing the checks and
so NA should be returned. Support for point estimates close to the boundary will be included

in the future.
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Table 1.

Wald Confidence Bounds and the Likelihood-Ratio p-Values at the Bounds

p-value p-value
Lower Upper (Lower (Upper
Parameters Estimate Bound Bound Bound) Bound)
Factor Loadings
x2 on visual 0.554 0.358 0.749 .053 102
x3 on visual 0.729 0.516 0.943 .045 .105
x5 on textual 1.113 0.985 1.241 .038 .064
x6 on textual 0.926 0.817 1.035 .042 .069
x8 on speed 1.180 0.857 1.503 011 .070
x9 on speed 1.082 0.785 1.378 .053 229
Factor Covariances
visual with textual 0.408 0.264 0.552 .054 .091
visual with speed 0.262 0.152 0.373 .030 .070
textual with speed 0.173 0.077 0.270 .035 .075

Note. The p-values are the y? difference test p-values comparing the fitted model to a model

with a parameter fixed to its bound (upper or lower).



LBCIIN R

Figure 1
A Sample Confirmatory Factor Analysis Model Fitted to the Holzinger and Swineford

Dataset
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Figure 2
Log Profile Likelihood and Its Quadratic Approximation: Covariance between Visual Ability
and Speed Ability in the Confirmatory Factor Analysis Model Fitted to Holzinger-Swineford
Dataset
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Note. The blue solid line is the plot of log profile likelihood of the covariance between visual
and speed in the confirmatory factor analysis on the Holzinger-Swineford dataset. The red
dotted line is the plot of log profile likelihood using quadratic approximation. The value
when the log profile loglikelihood is zero is the maximum likelihood estimate. The log
profile loglikelihood is -1.92 at the horizontal solid line. The two blue triangles form the 95%
likelihood-based confidence interval, and the two red circles form the 95% Wald-type
confidence interval. The p-values are the y? difference test p-values when the parameter is

fixed to the corresponding values.
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Figure 3
Log Profile Likelihood and Its Quadratic Approximation: Indirect Effect (ab) in the Simple
Mediation Model Fitted to the Tar-Or et al. (2010) Dataset
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Note. The blue solid line is the plot of log profile likelihood of the indirect effect (ab) in the
simple mediation model fitted to the Tar-Or et al. (2010) dataset. The red dotted line is the
plot of log profile likelihood using quadratic approximation. The value when the log profile
loglikelihood is zero is the maximum likelihood estimate. The log profile loglikelihood is -
1.92 at the horizontal solid line. The two blue triangles form the 95% likelihood-based
confidence interval, and the two red circles form the 95% Wald-type confidence interval. The
p-values are the y? difference test p-values when the parameter is fixed to the corresponding

values.
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Figure 4
Log Profile Likelihood and Its Quadratic Approximation. Factor Loading of x9 on Speed

Ability in the Confirmatory Factor Analysis Model Fitted to Holzinger-Swineford Dataset
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Note. The blue solid line is the plot of log profile likelihood of the factor loading of x9 on
speed ability in the confirmatory factor analysis on the Holzinger-Swineford dataset. The red
dotted line is the plot of log profile likelihood using quadratic approximation. The value
when the log profile loglikelihood is zero is the maximum likelihood estimate. The log
profile loglikelihood is -1.92 at the horizontal solid line. The two blue triangles form the 95%
likelihood-based confidence interval, and the two red circles form the 95% Wald-type
confidence interval. The p-values are the y? difference test p-values when the parameter is

fixed to the corresponding values.
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Figure 5
Log Profile Likelihood and Its Quadratic Approximation: Unstandardized (ab) and
Standardized (ab_std) Latent Indirect Effect in the Latent Mediation Model Fitted to the

mediation_latent Dataset
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Note. The blue solid lines are the plot of log profile likelihoods of the unstandardized (ab)
and standardized (ab_std) latent indirect effect in the latent mediation model fitted to the
mediation_latent dataset. The red dotted lines are the plots of log profile likelihoods using
quadratic approximation. The values when the log profile loglikelihoods are zeros are the
maximum likelihood estimates. The log profile loglikelihood is -1.92 at the horizontal solid
lines. The two blue triangles in each panel form the 95% likelihood-based confidence
interval, and the two red circles in each panel form the 95% Wald-type confidence interval.
The p-values are the y? difference test p-values when a parameter is fixed to the

corresponding values.



