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CORRELATION-BASED META-ANALYTIC STRUCTURAL 2 

Abstract 

More and more researchers use meta-analysis to conduct multivariate analysis to summarize 

previous findings. In the correlation-based meta-analytic structural equation modeling 

(cMASEM), the average sample correlation matrix is used to estimate the average population 

model. Using a simple mediation model, we illustrated that random effects covariation in 

population parameters can theoretically bias the path coefficient estimates and lead to 

nonnormal random effects distribution of the correlations. We developed an R function for 

researchers to examine by simulation the impact of random effects in other models. We then 

re-analyzed two real datasets and conducted a simulation study to examine the magnitude of 

the impact on realistic situations. Simulation results suggest parameter bias is typically 

negligible (less than .02), parameter bias and RMSE do not differ across methods, 95% 

confident intervals are sometimes more accurate for the TSSEM approach with a diagonal 

random effects model, and power is sometimes higher for the traditional Viswesvaran-Ones 

approach. Given the increasing popularity of cMASEM in organizational research, these 

simulation results form the basis for us to make several recommendations on its application. 

Keywords: meta-analysis, structural equation modeling, meta-analytic structural 

equation modeling 
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Correlation-based Meta-Analytic Structural Equation Modeling:  

Effects of Parameter Covariance on Point and Interval Estimates 

Meta-analysis is now a popular approach to review previous studies. There are three 

main goals of meta-analysis: to estimate the average effect size, to estimate the degree of 

heterogeneity, and to explain the heterogeneity. Meta-analysis is a powerful tool to draw 

conclusions systematically from previous findings. Meta-analysts can also address research 

questions that are difficult, if not impossible, in primary research. In the early use of meta-

analysis of correlational associations, usually only the relations between two variables were 

examined. Most of the meta-analytic procedures were developed initially to summarize 

bivariate correlations between two variables. In the last two decades, more and more 

researchers combined meta-analysis and path analysis to test path models. This general 

approach is now usually denoted as meta-analytic structural equation modeling (MASEM) 

(Cheung, 2015a; also see Shadish, 1996, for how this approach can contribute to theory 

testing and development). Meta-analytic path analyses have been conducted in a wide variety 

of organizational research (e.g., Liu, Huang, & Wang, 2014, on job search intervention; 

Hong, Liao, Hu, & Jian, 2013, on the mediating roles of service climate between leadership 

and human resources practices and customer satisfaction; Ng & Feldman, 2015, on the paths 

from ethical leadership through trust in leader to task performance and other outcome 

variables; Colquitt, LePine, & Noe, 2000, on motivation to learn; Beus, Dhanani, & Mccord, 

2015, on the effects of Big Five on workplace safety). Becker and Schram (1994) called this 

type of synthesis the model-driven approach of meta-analysis. They argued, “many areas of 

research can no longer be characterized by simple main effects and bivariate relationships” 

(p. 375). 

In the present paper, we aimed to investigate one of the goals in MASEM, namely, 

to estimate the average effects. In MASEM, this entails both estimating the means of the 
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model parameters (point estimation) and forming confidence intervals for these parameters 

(interval estimation). As illustrated later, the estimation of the average effects is influenced 

by the estimation of the mean correlations and their random effects. Therefore, this aspect 

was also examined. In the following sections, first, we will define the random effects (RE) 

path model and mean correlation matrix (MCM) path model in MASEM, and briefly 

introduce the commonly adopted approach, the correlation-based MASEM approach. Second, 

we will examine analytically the potential impact of the random effect in parameters, 

including both variation and covariation, on point and interval estimations of parameters in 

this approach. Third, we will present a tool for users to explore the potential impact of 

random effects in parameters for any path models by simulation. Fourth, we will present the 

re-analyses of two previous studies and compared the results. Last, a simulation study will be 

reported to empirically compare the performance of two common methods, the Viswesvaran 

and Ones (1995) approach (denoted as VOMASEM in the present paper) and the two-stage 

structural equation modeling approach proposed by Cheung (2015a, commonly known as 

TSSEM) when random effect variation and/or covariation are present among population 

parameters. 

Defining the Random Effects Path Model and Mean Correlation Matrix Path Model 

In meta-analysis, there are two main models: fixed effects model and random effects 

model. In the fixed effects model (Hedges & Vevea, 1998), it is assumed that the population 

effect is the same for all studies in an analysis. Variation in effects is due to sampling error 

only. This model is usually unrealistic, and perhaps is plausible only when the studies are 

identical in many aspects, such as sample characteristics, operationalization of variables, and 

procedures. As concluded by Hedges (2016), “heterogeneity among research results is a 

normative feature of science” (p. 210). Therefore, we will focus on the second major model, 

the random effects model (Hedges & Vevea, 1998). In the random effects model, it is 
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assumed that there are generally two sources of variation for the effect sizes. One is sampling 

error. The other is genuine variation in the population effect sizes. This variation, usually 

denoted as the random effect, can be due to many other factors, such as research artifacts and 

theoretically meaningful study characteristics. The latter are usually called moderators in 

meta-analysis (Schmidt & Hunter, 2015). Despite this variation in population effect sizes in 

the random effects model, it is still informative to estimate the average of the population 

effect size. Therefore, one goal in the random effects model is to estimate the average effect. 

In MASEM, with three or more variables involved, it is reasonable to expect that the 

fixed effects model is even less plausible than it is in the meta-analysis of a bivariate relation 

(between two continuous variables as in correlation, or between a categorical variable and a 

continuous variable as in standardized mean difference). However, how a mean model under 

a random effects model is defined has rarely been discussed in MASEM. 

If all variables were measured in all studies in a MASEM review, one can use 

parameter-based MASEM (Cheung & Cheung, 2016). A model is fitted to all studies, and the 

parameter estimates from these studies are then treated as effect sizes and meta-analyzed as 

usual using techniques for multivariate meta-analysis. Random effect in parameter estimates 

can be estimated directly. We do not need any techniques specifically for MASEM. We 

denote this model as the random effects path model (RE path model). This is similar to a 

usual path model, except that it has two sets of parameters: the means of the model 

parameters, and random effects variance and covariances of the model parameters. This is a 

direct extension of the random effects model in conventional meta-analysis, except that, 

instead of one mean and one "true" variance, there are more than one of each. It is also 

similar to multivariate meta-analysis, except that the effect sizes are model parameters, rather 

than simply correlated effect sizes. 
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For example, suppose we are going to do a meta-analysis on three variables: attitude, 

intention, and behavior. One possible RE path model is a complete mediation model in which 

attitude affects intention, and intention affects behavior. In standardized form, this model has 

two free parameters, the standardized regression coefficients from attitude to intention, 

denoted as a, and the standardized regression coefficients from intention to behavior, denoted 

as b. These two free parameters are allowed to be any valid values, including zero, in the 

population. The path from attitude to behavior is fixed to zero in all studies. That is, the RE 

path model posits that this direct path is zero for all studies in the population. It has two free 

random parameters (a and b), with population means, random effects variances, and random 

effects covariances. Let us denote this as RE path model 1, as illustrated in Figure 1. Another 

example is a partial mediation model, denoted as RE path model 2 in the figure, with three 

standardized parameters, all allowed to vary across studies and may covary among 

themselves. It has three free random parameters (a, b, and the direct path, denoted as c'), with 

three population means and a three-by-three random effects variance-covariances matrix. By 

parameter-based MASEM, both models may be fitted in all studies, and the hypothesis that 

intention fully mediates the effect of attitude on behavior in all studies is tested empirically. 

For example, we can test whether the mean and random effect variance of the direct path are 

both nonsignificant. If yes, then the data favor RE path model 1. If the mean of the direct path 

is not significant but the random effect variance is significant, then the data favor RE path 

model 2. 

Unfortunately, parameter-based MASEM is rarely feasible in practice. It is common 

that for a model of interest, very few studies measured all variables in the model. It is also 

undesirable to exclude studies that measured some but not all the variables. Therefore, the 

common practice is to form an average correlation matrix based on available information, and 

then test one or more models on this average correlation matrix. We denote this model in 
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correlation-based MASEM as the mean correlation matrix (MCM) path model. This approach 

is called the correlation-based MASEM approach (Cheung & Cheung, 2016, denoted as 

cMASEM below), and is the dominant approach in MASEM.  

Correlation-based MASEM (cMASEM) 

All common approaches within cMASEM, except for the full-information MASEM 

(FIMASEM) proposed by Yu et al. (2016, to be reviewed later), involve two stages. First, an 

average sample correlation matrix is computed. Second, a path model, called MCM path 

model in the present paper, is fitted to this correlation matrix. The common approaches differ 

on the procedures used in these two stages. In the VOMASEM approach (proposed by 

Viswesvaran & Ones, 1995), each bivariate relation is meta-analyzed separately to form the 

average sample correlation matrix. For example, with four variables and hence six bivariate 

relations, six meta-analyses will be conducted. The average sample correlations from these 

meta-analyses will then be used to form the average sample correlation matrix (e.g., Premack 

& Hunter, 1988; Viswesvaran, Schmidt, & Ones, 2005). Approaches similar to this one were 

used as early as 1980s (e.g., in Premack & Hunter) but is still popular nowadays in 

organizational research (see, e.g., Beus et al., 2015; Courtright, Thurgood, Steward, & 

Pierotti, 2015; Knight & Eisenkraft, 2014). In the generalized least squares approach (GLS; 

Becker, 1992, 1995, see Ouellette & Wood, 1998, for an example) or the multilevel approach 

(Kalaian & Raudenbush, 1996; Raudenbush, Becker, & Kalaian, 1988), all the available 

sample correlations are jointly analyzed using a regression model, with the correlations as 

dependent variables, to compute the average sample correlation matrix. In the two-stage 

structural equation modeling (TSSEM) approach (Cheung, 2015a; Cheung & Chan, 2005), 

structural equation modeling is used to estimate the average sample correlation matrix. These 

approaches differ in their assumptions and estimation. However, all approaches basically 

come up with a correlation matrix that is intended for estimating the population correlation 
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matrix, or the average population correlation matrix in cases of heterogeneity (see the next 

section). In this stage, some procedures use random effects model. For example, if Hunter-

Schmidt procedure is used, the correlations in each cell of the correlation matrix may be 

tested for homogeneity and the variation of population correlations estimated (e.g., Joseph, 

Newman, & O’Boyle, 2015). It is also possible to adopt a random effects model in GLS and 

TSSEM when forming the average sample correlation matrix. 

After the average sample correlation matrix has been computed, a path model or a 

structural model with one or more latent factors is fitted to the matrix. In VOMASEM, the 

average correlations in the matrix usually do not have the same total sample size due to 

missing data (correlations not reported or variables not measured in some studies). A number 

(e.g., harmonic mean, median) is selected to be the representative sample size and then the 

average sample correlation matrix along with this sample size are submitted to an SEM 

program as if the matrix were from a single large sample. Though rarely stated clearly in 

studies using VOMASEM, it seems that the mean correlation matrix is usually treated as a 

covariance matrix when fitting a model. In the GLS, multilevel, and TSSEM approaches, the 

sampling variance-covariance of the correlations can be estimated and used in SEM programs 

directly instead of the sample size. Although these cMASEM approaches differ on how to 

implement the second stage, they basically estimate the population parameters as in typical 

structural equation modeling, with differences in modeling the sampling variances and 

covariances. 

To the best of our knowledge, all the common procedures mentioned above do not 

make use of the random components in stage two, even though random effects are modelled 

when computing the mean correlation matrix in the first stage. All model parameters in stage 

two are assumed to be fixed. In other words, a fixed effects model is actually adopted in stage 

two of cMASEM. For example, in their meta-analysis of Big Five’s effects on workplace 
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safety, Beus et al. (2015) found non-negligible random effects for correlations between some 

variables in the first stage, and moderators such as study context and age were used to explain 

such heterogeneity. However, in the second stage, when fitting the mediation model, the 

correlations were treated as homogeneous and the path model was interpreted as in primary 

studies, with no random effects. This is a common practice for other similar MASEM studies 

(e.g., Ng & Feldman, 2015; Joseph et al., 2015; but see Knight & Eisenkraft, 2014, which 

used subgroup analysis in stage two to investigate possible impact of moderators on path 

coefficients). In a review by Sheng, Kong, Cortina, and Hou (2016) of cMASEM studies 

(they did not use the term cMASEM, but most of studies they identified used methods in this 

category), many studies did not include moderators when testing path models in stage two. 

This is conceptually inconsistent because, on the one hand, heterogeneity is found and 

interpreted in the correlation matrix, but on the other hand, this heterogeneity is ignored when 

testing and interpreting the model fitted to the correlation matrix. 

To take into account heterogeneity in model parameters implied by heterogeneity in 

the correlation matrices, Yu et al. (2016) proposed the method called full-information 

MASEM (FIMASEM). Although they used VOMASEM (denoted as traditional MASEM in 

their paper) and TSSEM (and they denoted the application of FIMASEM to TSSEM as TS-

FIMASEM), in principle FIMASEM can be applied to all cMASEM approaches that yield 

both a mean correlation matrix and an estimate of the random effects in the correlation 

matrix. In addition to fitting a model to the mean correlation matrix, a large number of 

random correlation matrices are generated, using a normal distribution with means equal to 

the mean correlation matrix and standard deviations equal to the random effects estimated in 

stage one. The hypothesized model is then fitted to each of these random correlation matrices. 

The heterogeneity in model parameters is examined through the distribution of the model 
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parameters from simulated correlation matrices. Heterogeneity in goodness of fit can be 

similarly investigated. 

The FIMASEM is a promising extension to fill the gap of estimating the degree of 

heterogeneity of model parameters in cMASEM, without the need for parameter-based 

MASEM. However, it is still an emerging approach that needs more empirical studies. 

Moreover, similar to other cMASEM approaches, it relies on the accuracy of the stage one 

results, that is, the estimation of the mean correlation matrix and its random effects. The 

focus of the present study is on the stage one and its impact of on stage two. Therefore, we 

will not further investigate FIMASEM in the present study.  

Estimation in cMASEM 

Two issues on estimation will be investigated in the following sections. First, we 

will examine to what extent the parameter estimates of the MCM path model fitted in 

cMASEM can provide unbiased point and interval estimates of the means of the parameters 

in the RE path model. Despite the lack of techniques for estimating random effects directly in 

the second stage of cMASEM, one can argue that this approach can still estimate parameters 

in the RE path model. Moreover, if random effects in the correlation matrix have been 

accounted for in stage one, one can argue that the stage two confidence intervals should have 

taken into account random effects in model parameters. The assumption that cMASEM 

estimates parameter means in the RE path model is required when researchers acknowledge 

random effects in stage one but then interpret the model parameters as fixed in stage two. For 

example, in Hong et al.’s (2013) investigation of the effect of service climate on customer 

satisfaction and financial outcomes through proposed mediators, they found that service 

contexts (personal service vs. nonpersonal service) did significantly moderate the correlations 

between service climate and some of the mediators as well as outcome variables. 

Nevertheless, researchers can defend this approach by arguing that the stage two path 
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analysis results can still estimate the average direct and indirect effects of service climate on 

the outcome variables.  

The issues that we will investigate below are not confined to any particular 

implementation of the cMASEM approach. We would like to examine whether cMASEM 

can in principle unbiasedly estimate the parameter means of the RE path model if: (a) the 

model being fitted in stage two is not misspecified, (b) both the number of studies and the 

sample sizes of the studies are large, and (c) all studies provided the full correlation matrix 

(i.e., no missing correlation). We will show that, even under these ideal conditions, things can 

go wrong. Therefore, in the next section, we will not focus on any particular implementation 

of cMASEM approach. 

Example: A Simple Mediation Model 

We will use a simple mediation model as an example and examine how parameter 

variation and covariation may affect the implied population correlations. This model has 

three variables, X (independent variable), M (mediator), and Y (dependent variable). The 

effect of X on M is a, the effect of M on Y is b, and the direct effect from X to Y is c'. Under 

random effects model, these parameters may vary and/or covary. The implied population 

correlations are 

ρ𝑀𝑋 = 𝑎 (1) 

ρ𝑌𝑋 = 𝑐′ + 𝑎𝑏 (2) 

ρ𝑌𝑀 = 𝑏 + 𝑎𝑐′ (3) 

Table 1 shows the expectations, random effect variances, and random effect 

covariances of the implied population correlations (derived in Appendix 1). In these 

equations, μ𝑈 denotes the expected value of u, τ𝑈
2  denotes the variance of u, and τ𝑈𝑉  

denotes the covariance of u and v. Note that these are the variances and covariances of the 

population parameters across studies, not sampling variances nor covariances. 
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Table 1 also shows the case in which the model parameters vary but do not covary. 

Three observations need to be discussed. First, the expectations of two implied population 

correlations, ρYX and ρYM, depend on the random effect covariances among parameters (τab 

and τac', respectively). To the extent that a covary with b or c' , the expectation of these 

correlations may be different from those when the parameters have zero random effect 

covariances. Second, even if the parameters vary but have zero random effect covariances, 

the implied population correlations may still have non-zero random effect covariances (see 

the last three columns). In this mediation model, the three implied population correlations 

have zero random effect covariances only for some combinations of the expectations and 

random effect variances of the model parameters, such as μb = μc' = 0 and τ𝑏
2 = τ𝑐′

2  = 0 (the 

effects of X and M on Y are fixed to zero) or μa = 0 and τ𝑎
2  = 0 (the effect of X on M is 

fixed to zero). Third, the implied population correlations ρ𝑌𝑋 and ρ𝑌𝑀 are the sum of a 

model parameter and the product of two other model parameters (ab and ac' respectively). It 

is well-known that the distribution of ab is nonnormal, even if a and b are normally 

distributed (Craig, 1936; but note that the distribution of ab can approach a normal 

distribution in some special cases, see Aroian, 1947). However, to the extent that the other 

component (c' in ρYX and b in ρYM) is normally distributed, the implied population correlation 

may still be approximately normally distributed, especially when the variance of the other 

component is large and hence dominates the random effect variation of the implied 

population correlation. In sum, even if the random effects of the model parameters have a 

multivariate normal distribution, whether the random effects distribution of these two implied 

population correlations is approximately multivariate normal depends on the random effect 

variances and covariances of the random parameters. 

In the following sections, we first investigate the possible impact of random effect 

variation without covariation on parameter estimation. We then examine the case with both 
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random effect variation and covariation. Numerical examples will be used to help understand 

the practical impact of the random effect variances and covariances. 

Parameters Vary but No Random Effect Covariation 

First, we consider the case when the population parameters vary across studies but the 

random effect covariances among population parameters are zero across studies. The simple 

mediation model mentioned above is used as an example. Let's assume, in the population, 

attitude (X) causes intention (M), and intention causes behavior (Y). Suppose the mean of a 

path (attitude to intention) is .40, the mean of b path (intention to behavior) is .30, and the 

mean of the c' path (attitude's direct effect on behavior) is zero. The expectations, random 

effect variances, and random effect covariances of the implied population correlation are 

shown in Table 1, Example 1. The equations suggest three implications on cMASEM. First, 

had a mediation model been fitted to the expected correlation matrix, the means of the effects 

of attitude and intention on behavior could be recovered (a = .40, b = .30, and c' = .00), 

regardless of the random effect variances of the parameters. This suggests that, in this model, 

if the model parameters have no random effect covariation, we can safely assume that 

cMASEM can yield unbiased estimates of the mean parameters, as long as it can unbiasedly 

estimate the mean correlations. 

Second, unless τ𝑎
2  and either τ𝑏

2 or τ𝑐′
2

 (or both) are equal to zero (i.e., the effect 

of attitude on intention is fixed, and either the effect of intention to behavior or the direct 

effect, or both, is fixed), at least one of the random effect covariances between implied 

population correlations is non-zero. To numerically illustrate the impact, let's consider the 

correlation between ρMX and ρYX (𝑅ρ𝑀𝑋 ,ρ𝑌𝑋
) and between ρYX and ρYM (𝑅ρ𝑌𝑋 ,ρ𝑌𝑀

), 

𝑅ρ𝑀𝑋 ,ρ𝑌𝑋
= .30τ𝑎

2 /√τ𝑎
2 (.09τ𝑎

2 + .16τ𝑏
2 + τ𝑐′

2 + τ𝑎
2 τ𝑏

2) (4) 

𝑅ρ𝑌𝑋 ,ρ𝑌𝑀
= .40(τ𝑏

2 + τ𝑐′
2 )/√(.09τ𝑎

2 + .16τ𝑏
2 + τ𝑐′

2 + τ𝑎
2 τ𝑏

2)(16τ𝑐′
2 + τ𝑏

2 + τ𝑎
2 τ𝑐′

2 ) (5) 
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Suppose τ𝑎
2  = τ𝑏

2 = τ𝑐′
2 . If the standard deviation of a (τ𝑎) is .05, 𝑅ρ𝑀𝑋 ,ρ𝑌𝑋

= .268 

and 𝑅ρ𝑌𝑋 ,ρ𝑌𝑀
 = .663. If the direct path is fixed to zero (τ𝑐′

2  = 0) and only a and b path vary 

(and τ𝑎
2  = τ𝑏

2), with the standard deviation of a equal to .05, 𝑅ρ𝑀𝑋 ,ρ𝑌𝑋
= .597 and 𝑅ρ𝑌𝑋 ,ρ𝑌𝑀

 

= .796, even larger than those with c' also varies. That is, for a simple mediation model, even 

if we believe the paths have small random effects but do not covary, we should usually 

expect nonzero random effect covariation in the correlations, which are estimated in stage 

one of cMASEM. If the random effect covariation is fixed to zero in stage one of cMASEM, 

the estimates of random effect variances may be biased, resulting in biased estimates of 

sampling variances and covariances of model parameters in stage two and affecting the 

confidence intervals, statistical power, and Type I error in this stage.  

This is a potential problem in cMASEM because it is sometimes necessary to 

assume, in stage one, that the population correlations vary but do not covary. It is because the 

number of elements in the random effect covariance matrix increases exponentially with the 

number of variables. For three variables, as in a simple mediation model, there are three 

correlations and hence six random effects variances and covariances for these three 

correlations. For five variables, as in the popular theory of planned behavior (Ajzen, 1991), 

there are ten correlations and hence fifty-five variances and covariances. Even in meta-

analysis, there may not be enough data to reliably estimate this large random effect 

covariance matrix (Cheung, 2015a; also see the example in 7.6.1.3 in the book). To the extent 

that some correlations covary, as in the case above, fitting a diagonal random effects model 

can result in biased estimates of the covariance matrix used in the second stage, and resulting 

in confidence intervals that tended to be too narrow or too wide. This is analogous to using a 

fixed effect model to meta-analyze correlations when the true variance is nonzero, resulting 

in biased estimates of the sampling variance of the mean correlation. 



CORRELATION-BASED META-ANALYTIC STRUCTURAL 15 

Third, the random effects distribution of the three implied population correlations 

may deviate from a multivariate normal distribution. However, the deviation is typically 

small. As an example, we randomly generated 5,000 sets of a, b, and c', with means equal 

to .40, .30, and .00 respectively, normally distributed but uncorrelated. The distribution of ρYX 

is close to a normal distribution, with skewness only .06 and excess kurtosis only .06. 

Parameters Vary and Covary 

Next, we consider a case with random effect covariation among model parameters. 

The same simple mediation model is used, with mean a = .40, mean b = .30, and mean c' 

= .00, and all three parameters vary and covary. The expectations, variances, and covariances 

of the implied population correlations were shown in Table 1, Example 2. The equations 

suggest three implications. First, different from the case of no random effect covariation, the 

expectations of the three implied population correlations depend on the random effects 

covariances (τ𝑎𝑏 and τ𝑎𝑐′). If the random effects of the three parameters are .05 in standard 

deviation, and the random effect correlations between a and b, a and c', and a and c' are all 

equal to .10, the expectations of ρYX and ρYM are .1203 and .3003 respectively. If the random 

effect correlations are .80, the expectations of ρYX and ρYM are .1220 and .3020 respectively. 

Had a mediation model been fitted to the expected population correlation matrix, the estimate 

of b path and c' path would be .3002 and .0002 for random effect correlations of .10, 

and .3014 and .0013 for random effect correlations of .80. This is because the biases in the 

expectations is equal to the random effect covariances, which is bounded by the random 

effect variances. For example, if the random effect SD is .05, the random effect variance 

is .0025 and the maximum possible random effect covariance cannot exceed .0025. Even if 

the random effect variation is .15, with a random effect correlation of .80, the estimates of b 

and c' paths will be .3129 and .0118, not much different from .30 and .00, the means of b and 

c'. Nevertheless, if the random effect variation is .20 and the random effect correlation is .80, 
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then the estimates of b and c' paths will be .3229 and .0209, a bias of .02. In sum, if the 

model parameters covary, the stage two cMASEM estimates of the mean model parameters 

will be biased, but the magnitude of the bias will depend on the random effect variation and 

covariation of the model parameters. In some situations, it can be practically negligible. 

Second, the implied population correlations have non-zero random effects 

covariances. Because the terms are additive, unless one or more random effect covariances 

are negative, the random effects covariances for the implied population correlations will only 

be larger than those in the case of variation without covariation. Therefore, we will not repeat 

the numerical illustration here. Similar to Example 1, fitting a diagonal random effect matrix 

in stage one of cMASEM may adversely affect the confidence intervals and statistical tests of 

model parameters in stage two. 

Third, the random effect distribution may deviate from a multivariate distribution but 

typically only slightly, as in the case of variation without covariation (Example 1). 

An R Function to Explore the Distribution of Implied population correlations in Other 

Models 

Although most of the results in the simple mediation discussed above can be derived 

analytically, it becomes much more complicated even in a model with four or more variables, 

such as a parallel mediation model with two mediators. Even with two mediators, the 

variances and covariances of some implied population correlations involve the expectations 

of the product of the deviation from the means of three variables, and can no longer be 

simplified to variances and covariances as we did above. Moreover, the assumption of normal 

distribution may no longer be tenable for more complicated models. As the number of 

variables increases, the probability of generating an invalid correlation matrix (one that is 

non-positive definite) increases, resulting in rejection of some configurations of model 

parameters. For example, for a three-predictor regression model, assuming that all three 
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predictors are uncorrelated, it is impossible to have all three standardized coefficients equal 

to .60 because this will result in a negative implied error variance of the standardized 

outcome variable (-.08). In other words, the multivariate distribution of the standardized 

parameters is bounded, resulting in a truncated multivariate normal distribution (Tallis, 

1961). This will cast doubt on the appropriateness of the simplification we did for the simple 

mediation model. In short, it is impractical to require researchers to explore a model 

analytically as we did if the models of interest have four or more variables. 

One possible alternative to explore the impact of random effects in parameters on the 

implied population correlations is by simulation. We developed a function in R 3.3.3 (R 

Development Core Team, 2017) to facilitate researchers to explore path models more 

complicated than the simple mediation model we discussed above. We described how to use 

this function in Appendix B.  

It is beyond the scope of the present paper to examine other models. Scripts for some 

sample models are available from the link in Appendix B, to illustrate how the function can 

be used to explore models such as a mediation model with three mediators in parallel or in 

serial, and a regression model with three correlated predictors. The function, though in early 

development, can serve as a template for researchers to adapt it for models of concern in their 

studies. 

Re-analyzing Two Real Datasets 

The discussion above is based on hypothetical cases. It is not clear how large random 

effect variances and covariances can be in real MASEM datasets, and how much the choice 

of random effect model in stage one can affect stage two results in cMASEM. To explore the 

magnitude of random covariation and the potential impact of the inclusion or exclusion of 

random effect covariation in modeling random effects, we re-analyzed two datasets provided 

in metaSEM, the R package commonly used for TSSEM (Cheung, 2015b). These two 
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datasets were also analyzed in Cheung and Cheung (2016), though their focus was on the 

differences between cMASEM and parameter-based MASEM, rather than random effects per 

se. 

The first dataset is a collection of 50 correlation matrices from studies investigating the 

theory of planned behavior (TPB, Ajzen, 1991), reported in Cheung and Chan (2000). Only 

four variables in the model were included: attitude toward a behavior (ATT), subjective norm 

regarding the behavior (SN), behavioral intention to perform the behavior (BI), and the 

performance of the behavior (BEH). Some studies did not measure all four variables. The 

mean and median sample sizes were 163.6 and 131 respectively. The model to be examined 

is a complete mediation model, with ATT and SN affects BEH through the mediator BI. 

The second dataset consists of 46 correlation matrices of life satisfaction (LS), job 

satisfaction (JS), and job autonomy (JA) obtained from 42 nations (WVS, World Value 

Survey Group, 1994). All correlation matrices included these three variables. The mean and 

median sample sizes were 849.1 and 866 respectively. The model to be examined is a 

complete mediation model, with JA affects LS through the mediator JS. 

For each dataset, two sets of TSSEM analysis were conducted, one modeled both 

random effect variances and covariances (full RE model) and the other modeled only random 

effect variances (diagonal RE model), assuming that the correlations do not have random 

effect covariation. The R scripts along with the results are available at Open Science 

Framework (https://osf.io/n2a5b/). 

We first examined the degree of random effect covariation, available only in full RE 

model. For the ease of interpretation, the matrices of random effects were converted to 

correlation matrices, such that the random covariation can be interpreted as correlations 

rather than covariances. As shown in Table 2, for the TPB dataset, the estimated random 

correlation ranged from .062 to .758 in magnitude, mean .303, and median .385. For the 

https://osf.io/n2a5b/
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WVS dataset, there are only three random correlations, ranged from .201 to .823, mean .456, 

larger than that in the TPB dataset. This suggests that, in real datasets, the random covariation 

between correlations can be moderate or larger when presented as correlations. 

We then examined the mean correlations estimated by full and diagonal RE models. 

Table 3 shows that the differences in point estimates are negligible, with magnitude .01 or 

less except for two correlations in the TPB dataset (largest difference .025). This suggests 

that the choice of RE model may have little impact on point estimation of the mean 

correlations. 

Table 4 shows the estimated random effects variances for the correlations being meta-

analyzed, available in both diagonal and full RE models. For the ease of interpretation, the 

random effects were presented as standard deviations. In terms of magnitude, the differences 

are small, ranged from .002 to .020 in magnitude. However, for both datasets and all 

correlations, the estimates by the diagonal RE model were consistently lower than those by 

the full RE model. 

Last, we compared the parameter estimates given by the two RE models. Both the point 

estimates and the confidence intervals were presented in Table 5. The differences in point 

estimates ranged from .002 to .024 in magnitude in the TPB dataset, with largest difference at 

the effect of intention on behavior (.459 for diagonal RE model and .435 for full RE model, 

difference .024). The confidence interval is also slightly narrower for the diagonal RE model 

(.089 versus .099) for this effect. In the WVS dataset, the largest difference was found in the 

effect of job satisfaction on life satisfaction (.386 for diagonal RE model and .347 for full RE 

model, difference .039). The widths of the confidence intervals by these two models, on the 

other hand, had negligible differences (less than .006). 

There is an interesting phenomenon when comparing the differences in the estimates of 

mean correlations and the estimates of model parameters. Probably due to the use of 
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estimated random effects in stage two, differences in the former may not correspond to 

differences in the latter. In the TPB dataset, the largest difference was found in the attitude-

behavior correlation in stage one, but was found in the effect of intention on behavior in stage 

two. In the WVS dataset, the two RE methods yield negligible differences in stage one in 

estimating mean correlations, but yield a difference of .039 (the largest difference in the 

examples) in the effect of job satisfaction on life satisfaction.  

The results suggest that, in real datasets, random effect correlation can be 

substantial. The differences in results, on the other hand, may be practically small for most 

parameters. The results shed some light on what may happen in real cases. However, 

systematic investigation in cases with known population characteristics can help us to 

understand a broader range of situations. Moreover, the effect of random effect distribution 

on estimation cannot be determined analytically easily because it involves the joint effect of 

three variances and three covariances. In the following section, we will present a simulation 

study to investigate the impact of random variation and covariation and the choice of RE 

model on stage one and two results in cMASEM. 

Simulation Study 

A complete mediation model with three random model parameters, the a path (from 

the independent variable, X, to the mediator, M), the b path (from the mediator to the 

dependent variable, Y), and the direct path, c', from X to Y, was used as the mean population 

model. The c' path had non-zero random variation with mean equal to zero. Therefore, the 

mean model is a complete mediation, while direct path was positive in some populations and 

negative in some other populations. 

Factors 

Five factors were manipulated. First, we selected two numbers of studies (k), 25 and 

50, to cover the range of sample sizes usually found in MASEM reviews. Second, we 
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examined two sample sizes (n), 100 and 250. All studies in a condition had the same sample 

size, to avoid introducing too many factors and make the results difficult to interpret. Third, 

we examined two levels of means for a path and b path (μa and μb, respectively, Figure 2), .10 

and .30. We examined only models with means of a path and b path equal. Fourth, as in Yu et 

al. (2016), we examined two levels of random effect variation (in standard deviation [SD], τa, 

τb, and τc'), .10 and .20. The random variations of the path coefficients model were identical 

for all parameters (i.e., τa = τb = τc =.10, and τa = τb = τc =.20). The three model parameters 

were drawn from a multivariate normal distribution. Fifth, we investigated four levels of 

random effect covariation (expressed as correlation, ρab, ρac, and ρbc) of the model 

parameters: .00, .30, .50, and .80. 

Data Generation 

We generated 10,000 sets of random a, b, and c for each of the 32 combinations of 

sample sizes, parameter means, random variations, and random covariations. Sets of 

parameters with at least one of them greater than .95 or implies a non-positive definite 

population correlation matrix were replaced by generating another sets of parameters. For 

each sets of parameters, n cases of X, M, and M were generated from a multivariate normal 

distribution. The sample correlation was then computed, resulting in 10,000 sample 

correlation matrices for each condition. These sets of population parameters and the implied 

population correlation matrices were considered the population for the model in 

corresponding conditions. For each of the two numbers of studies (25 and 50), the target 

number of sample correlation matrices were randomly selected without replacement, repeated 

2,000 times, resulting in 2,000 replications for each condition. The R files of the populations 

(in RDS format) can be downloaded from Open Science Framework (https://osf.io/zhtrn/). In 

the present study, all studies have no missing correlations. 

https://osf.io/zhtrn/
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cMASEM Methods 

Stage 1: Estimating mean and random effects of the correlation matrix. We 

examined three procedures. The first two are based on the SEM-based TSSEM procedure 

proposed by Cheung (2014, 2015a) and implemented in the R package metaSEM (version 

0.9.12). TSSEM-Diag procedure assumes a diagonal RE model, in which correlations have 

random effect variations but zero random effect covariations. TSSEM-Full allows for both 

random effect variations and covariations. In VOMASEM procedure, one meta-analysis is 

conducted for each cell in the correlation matrix. Following Yu et al. (2016), we adopted the 

Hunter-Schmidt procedure (Hunter & Schmidt, 2004; Schmidt & Hunter, 2015) implemented 

in the metafor R package (Viechtbauer, 2010, version 1.9-9). Similar to TSSEM-Diag, the 

random effect variation estimates are available in VOMASEM for each cell. 

Stage 2: Fitting a path model to the mean correlation matrix. A just-identified 

partial mediation was fitted in this stage. TSSEM was conducted by the metaSEM package. 

Following the common practice, in VOMASEM, the mean correlation matrix was submitted 

to path analysis as if it were a covariance matrix (using the lavaan R package, Rosseel, 

2012, version 0.5-23.1097). Without missing data, the total sample size is equal to the 

harmonic mean and median of sample sizes across cells, two common choices of sample size 

in stage two of VOMASEM. Therefore, we used the total sample size in path analysis. 

Evaluation of the Methods 

In the present study, our focus is on estimating the model parameters in the RM. 

Therefore, we only examined the estimation of model parameter in stage two of cMASEM.  

We compared the three procedures on the following criteria: bias, root mean squared 

error (RMSE, equal to the square root of [bias2 + standard error2]), the coverage probability 

of the 95% confidence interval (CI), the Type I error rate in testing the nil mean direct path 

(c'), and the statistical power in testing the a and b paths. 
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Results  

Bias. As shown in Figure 3Error! Reference source not found., all three 

procedures had negligible bias across conditions for the three paths (less than .01 for a path, 

and less than .03 for b path and c' path). As expected from our analytical examination, the 

bias increased for b path and c' path as random effect variation and covariation increased. 

However, even for large random covariation (.80), the bias was still only .03 or less, which is 

small for a standardized coefficient. As the sample size increased, the already small bias 

further decreased. The number of studies, on the other hand, had little impact on the bias. 

RMSE. As shown in Figure 4, all three procedures yielded virtually the same RMSE 

in all conditions in estimating the path parameter means. For all three procedures, RMSE 

decreased when the number of studies increased, the sample size increased, and the random 

effect variation decreased. As expected from our analytical examination, the RMSE in 

estimating the b path and the c' path increased as the random effect covariation increased. 

Confidence interval (95%) empirical coverage probability. Figure 5 shows the 

empirical coverage probabilities of the 95% CI for the three methods. The coverage 

probabilities of the two TSSEM procedures were close to the nominal level (95%) in most 

situations, with one exception. In estimating the b path and the c' path, if the random effect 

variation was .20 (in SD) and/or the parameter mean was .30, the TSSEM-Full coverage 

probabilities decreased as random effect covariation increased and the number of studies 

increased. Nevertheless, the deviation from the nominal level decreased as the sample size 

increased. Moreover, the deviation from the nominal level was noticeable only when the 

random effect covariation was unusually large for all parameters. 

The coverage probabilities of VOMASEM, on the other hand, were consistently 

lower than those of the two TSSEM procedures in all conditions, even in estimating the a 

path. The VOMASEM coverage probability decreased as the sample size increased, the 
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random effect variation increased, and the random effect covariation increased. One possible 

explanation is the absence of the estimated random effect in stage two of VOMASEM. The 

use of the total sample size in stage two of VOMASEM implicitly assumes that variation of 

the mean correlations from stage two is solely due to sampling variation. Therefore, the larger 

the random effect, the more the stage two analysis underestimates the sampling variation, 

resulting in confidence intervals that are narrower than they should be to have the desired 

level of coverage probabilities. This is analogous to using fixed effect meta-analysis when 

random effect is present. Because the sampling distributions of the standardized path 

parameter estimates are not expected to be symmetric, we examined the mean widths of the 

confidence intervals from the three procedures. As shown in Figure 6, the mean widths of 

VOMASEM were consistently narrower than those by the TSSEM procedures, supporting 

our tentative explanation. 

Note that for the c' path, which has a population mean of zero, Type I error rate 

equals to one minus coverage probability (the probability of not including zero). Therefore, 

the results above also mean that the TSSEM procedures had Type I error rates close to the 

nominal level, except that TSSEM-Full showed slight over-rejection when the random effect 

covariation was large. VOMASEM had inflated Type I error rates in all conditions, and this 

inflation increased as the sample size increased, the random effect variation increased, and 

the random effect covariation increased, probably due to not considering stage one random 

effect estimates as suggested above.                

Power in testing the a path and b path. As shown in Figure 7, VOMASEM had 

the highest power rate (virtually 100% in nearly all conditions). The TSSEM procedures were 

similar in power rates, about .80 or higher when the number of studies was 50. With only 25 

studies, the power rates of TSSEM procedures could be as low as 60% when parameter 

means were .10. Because confidence intervals are used in stage two hypothesis testing, the 
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high power of VOMASEM can be explained by its narrower confidence interval it compared 

to TSSEM procedures as discussed above.  

General Discussion and Recommendations 

As argued in previous sections, a simulation study is needed because random 

variation and covariation can result in biases in point estimate, biases in sampling variances 

(due to biases in estimating random effects), and nonnormal random effects distribution. The 

performance of a cMASEM procedure is influenced by the joint effect of these three aspects. 

It is difficult to have simple guidelines or predictions on how random effects variation and 

covariation can affect the results. Nevertheless, bearing in mind possible exceptions, we 

would like to propose the following recommendations and reminders based on our results. 

First, in point estimation, because random effect covariances in model parameters 

are bounded by the random effect variances in model parameters, practically the biases in 

estimating the standardized path coefficients may be of magnitude of .01 or at most .02. 

Large biases only occur in extreme cases that rarely occurred in realistic situations.  

Second, results of the current simulation suggest that confidence intervals from 

VOMASEM have suboptimal coverage (see Figure 5) in conditions examined. One possible 

reason is the choice of sample size in stage two. Without missing data, it may appear that the 

total sample size is a natural choice for stage two. However, compared to TSSEM, 

VOMASEM does not consider dependence in the correlations (Yu et al., 2016). As we 

demonstrated above, correlations have random effect covariation even if the model 

parameters vary but are uncorrelated, resulting in larger sampling variation in stage two. The 

results suggest that the total sample size is too large as a proxy to reflect the sampling 

variation. However, there is no simple way to determine what the appropriate sample size 

should be, even without missing correlations. TSSEM has been developed exactly to handle 

this problem, by estimating the sampling variance directly. In the current simulation, both 
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TSSEM procedures and the VOMASEM procedure yielded satisfactory or at least acceptable 

performance in point estimation. The TSSEM procedures yielded superior confidence 

interval estimation, and the VOMASEM procedure had higher statistical power.  

Third, the simulation results suggest that the TSSEM-Diag performed as well as, or 

better than, TSSEM-Full in the aspects examined. These two procedures had negligible 

practical differences in bias and RMSE (differences less than .01 for standardized path 

coefficients), while the confidence interval coverage probabilities of TSSEM-Diag tended to 

be slightly higher than those of TSSEM-Full. One possible reason for this difference is the 

number of parameters involved in the full RE model. In stage one of TSSEM, even for three 

variables, six random effect components are estimated (three variances plus three 

covariances). Large sample sizes may be required to estimate them accurately. As shown 

Figure 5, the differences between the two methods decreased as the sample size increased, 

partly supporting this speculation. Therefore, unless the average sample size was large, the 

TSSEM-Diag might be preferable to TSSEM-Full. However, more studies are needed to 

compare TSSEM-Diag and TSSEM-Full in models more complicated than the present one. 

Last, in the few conditions in which TSSEM procedures yielded biased estimates or 

CIs had suboptimal coverage, the problem can increase with the number of studies. This is an 

important issue in meta-analysis because, paradoxically, the more studies we have, the more 

incorrect the results will become. If researchers suspect that their situations are similar to one 

of the conditions with large bias or CI with suboptimal coverage, the results should be 

interpreted with caution. 

Future Directions 

Future research effort is needed to address six issues. First, simulation studies should 

be conducted to examine to what extent FIMASEM can be used to estimate the random 

effects in model parameters. In the present study, we focused on estimating the means of 
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model parameters. However, the analysis also suggested that the random effects distribution 

of the correlations may not be multivariate normal even if the random effects distribution of 

the model parameter is multivariate normal. Simulation studies are needed to assess how 

much the assumption of multivariate normality in FIMASEM may affect the estimation of 

random effects in model parameters. Second, we investigated only conditions with no 

missing data. We do not expect that the problems found in some conditions will be lessened 

when there are missing correlations. However, it is possible that the satisfactory performance 

of a procedure in some conditions may become unsatisfactory in the presence of missing 

correlations. Third, robust TSSEM may be developed based on current robust methods in 

SEM to lessen the impact of nonnormal distribution in random effects.1 Fourth, our analytic 

discussion and simulation study focus on a simple mediation model. More studies are needed 

to confirm whether the impact of random effects is also practically minimal in more 

complicated models. Fifth, further studies can investigate other situations that involve 

product terms, such as multilevel models with higher level random effect covariations. Last, 

alternative approaches without the aforementioned problems should be explored. Directly 

meta-analyzing the sample estimates of the model parameters could be a possible candidate. 

For example, parameter-based MASEM (Cheung & Cheung, 2016) avoids all the problems 

that involve the implied correlation matrix and the average correlation matrix. However, this 

approach has its own limitations. It requires full correlation matrices from all studies, which 

is rarely possible in meta-analytic studies. Researchers can explore techniques that allow 

parameter-based MASEM to handle missing data as TSSEM does.  
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Footnotes  
 

1 We thank an anonymous reviewer for making this suggestion.  
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Table 1. Expectations, variances, and covariances of implied correlations. 

 Expectation Variance Covariance 

Model ρ𝑀𝑋 ρ𝑌𝑋 ρ𝑌𝑀 ρ𝑀𝑋 ρ𝑌𝑋 ρ𝑌𝑀 (ρ𝑀𝑋, ρ𝑌𝑋) (ρ𝑀𝑋, ρ𝑌𝑀) (ρ𝑌𝑋, ρ𝑌𝑀) 
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+ 2μ𝑎μ𝑏τ𝑎𝑏

+ (τ𝑎𝑏)2

+ 2μ𝑏τ𝑎𝑐′

+ 2μ𝑎τ𝑏𝑐′ 

μ𝑐
2τ𝑎

2 + μ𝑎
2 τ𝑐′

2

+ τ𝑏
2 + τ𝑎

2 τ𝑐′
2

+ 2μ𝑎μ𝑐′τ𝑎𝑐′

+ (τ𝑎𝑐′)2

+ 2μ𝑐′τ𝑎𝑏

+ 2μ𝑎τ𝑏𝑐′ 

μ𝑏τ𝑎
2

+ μ𝑎τ𝑎𝑏

+ τ𝑎𝑐′ 

μ𝑐′τ𝑎
2 + τ𝑎𝑏

+ μ𝑎τ𝑎𝑐′ 

μ𝑏μ𝑐′τ𝑎
2 + μ𝑎τ𝑏

2

+ μ𝑎τ𝑐′
2

+ (μ𝑏 + μ𝑎μ𝑐′)𝜏𝑎𝑏

+ (μ𝑐′ + μ𝑎μ𝑏)τ𝑎𝑐′

+ (1 + μ𝑎
2 + τ𝑎

2 )τ𝑏𝑐′

+ τ𝑎𝑏τ𝑎𝑐′ 

All 

parameters 

vary but 

uncorrelated 

μa μ𝑐′

+ μ𝑎μ𝑏 

μ𝑏

+ μ𝑎μ𝑐′ 

τ𝑎
2  μ𝑏

2τ𝑎
2 + μ𝑎

2 τ𝑏
2 + τ𝑐′

2

+ τ𝑎
2 τ𝑏

2  

μ𝑐
2τ𝑎

2 + μ𝑎
2 τ𝑐′

2

+ τ𝑏
2 + τ𝑎

2 τ𝑐′
2  

μ𝑏τ𝑎
2 μ𝑐′τ𝑎

2  μ𝑏μ𝑐′τ𝑎
2 + μ𝑎τ𝑏

2

+ μ𝑎τ𝑐′
2  

Example 1: μ𝑎 = .40, μ𝑏 = .30, μ𝑐′ = .00. Parameters vary (τ𝑎
2 , τ𝑏

2, and τ𝑐′
2  > 0) but uncorrelated (τ𝑎𝑏 = τ𝑎𝑐′ = τ𝑏𝑐′ = 0) 

 .40 .12 .30 τ𝑎
2  . 09τ𝑎

2 + .16τ𝑏
2

+ τ𝑐′ + τ𝑎
2 τ𝑏

2 

. 16τ𝑐′
2 + τ𝑏

2

+ τ𝑎
2 τ𝑐′

2  

. 30τ𝑎
2  .00 . 40(τ𝑏

2 + τ𝑐′
2 ) 

Example 2: μ𝑎 = .40, μ𝑏 = .30, μ𝑐′ = .00. Parameters vary (τ𝑎
2 , τ𝑏

2, and τ𝑐′
2  > 0) and covary (τ𝑎𝑏, τ𝑎𝑐′, and τ𝑏𝑐′ ≠ 0) 

 .40 . 12
+ τ𝑎𝑏  

. 30
+ τ𝑎𝑐′ 

τ𝑎
2  . 09τ𝑎

2 + .16τ𝑏
2

+ τ𝑐′ + τ𝑎
2 τ𝑏

2

+ .2τ𝑎𝑏 + (τ𝑎𝑏)2

+ .60τ𝑎𝑐′

+ .80τ𝑏𝑐′ 

. 16τ𝑐′
2 + τ𝑏

2

+ τ𝑎
2 τ𝑐′

2 + (τ𝑎𝑐′)2

+ .80τ𝑏𝑐′ 

. 30τ𝑎
2

+ .40τ𝑎𝑏

+ τ𝑎𝑐′ 

τ𝑎𝑏

+ .40τ𝑎𝑐′ 

. 40(τ𝑏
2 + τ𝑐′

2 )
+ .30τ𝑎𝑏 + .12τ𝑎𝑐′

+ (1.16 + τ𝑎
2 )τ𝑏𝑐′

+ τ𝑎𝑏τ𝑎𝑐′ 
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Table 2. Estimates of random covariation by full random effects model, converted to 

correlation (ρ) 

 

Cheung and Chan (2000) 

 

ATT ~~ 

SN 

ATT ~~ 

BI 

ATT ~~ 

BEH 

SN ~~ 

BI 

SN ~~ 

BEH 

BI ~~ 

BEH 

ATT ~~ SN 1.000      

ATT ~~ BI .385 1.000     

ATT ~~ BEH -.062 .535 1.000    

SN ~~ BI .758 .468 .044 1.000   

SN ~~ BEH .222 .184 .663 .393 1.000  

BI ~~ BEH -.228 .129 .660 -.128 .519 1.000 

World Value Survey 

 LS ~~ 

JS 

LS ~~ 

JA 

JS ~~ 

JA 
   

LS ~~ JS 1.000      

LS ~~ JA .823 1.000     

JS ~~ JA .201 .344 1.000    

 

Note: ATT: attitude; SN: subjective norm; BI: behavioral intention; BEH: behavior; LS: life 

satisfaction; JS: job satisfaction; JA: job autonomy. "X ~~ Y" denotes the correlation 

between X and Y. 
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Table 3. Estimates of mean correlations by diagonal random effects or full random effects 

 

 

ATT ~~ 

SN 

ATT ~~ 

BI 

ATT ~~ 

BEH 

SN ~~ 

BI 

SN ~~ 

BEH 

BI ~~ 

BEH 

Cheung and Chan 

(2000) 
      

Full .358 .486 .274 .309 .134 .439 

Diag .359 .476 .299 .300 .149 .435 

Diff .001 -.010 .025 -.009 .014 -.004 

 

LS ~~ 

JS 

LS ~~ 

JA 

JS ~~ 

JA 
   

World Value Survey       

Full .369 .216 .435    

Diag .369 .217 .434    

Diff .000 .001 -.001    

 

Note: Diff: The difference in estimate or confidence interval (CI) width between diagonal 

random effects results and full random effects results (diagonal – full). ATT: attitude; SN: 

subjective norm; BI: behavioral intention; BEH: behavior; LS: life satisfaction; JS: job 

satisfaction; JA: job autonomy. "X ~~ Y" denotes the correlation between X and Y. 
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Table 4. Random effects by diagonal random effects or full random effects (in standard 

deviation, τ) 

 

 

ATT ~~ 

SN 

ATT ~~ 

BI 

ATT ~~ 

BEH 

SN ~~ 

BI 

SN ~~ 

BEH 

BI ~~ 

BEH 

Cheung and Chan 

(2000) 
      

Full .154 .129 .142 .136 .090 .144 

Diag .139 .120 .126 .116 .077 .141 

Diff -.015 -.009 -.016 -.020 -.014 -.004 

 

LS ~~ 

JS 

LS ~~ 

JA 

JS ~~ 

JA 
   

World Value Survey       

Full .074 .071 .096    

Diag .070 .066 .094    

Diff -.003 -.004 -.002    

 

Note: Diff: The difference in estimate or confidence interval (CI) width between diagonal 

random effects results and full random effects results (diagonal – full). ATT: attitude; SN: 

subjective norm; BI: behavioral intention; BEH: behavior; LS: life satisfaction; JS: job 

satisfaction; JA: job autonomy. "X ~~ Y" denotes the correlation between X and Y. 
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Table 5. Parameter estimates by diagonal random effects or full random effects 

 

 Estimate Diff 

95% confidence 

interval 

CI 

width Diff 

Cheung and Chan (2000)       

Full random effects       

 Intention ~ Subjective Norm .157  .119 .195 .076  

 Attitude ~~ Subjective Norm .360  .311 .410 .099  

 Behavior ~ Intention .435  .386 .485 .099  

 Intention ~ Attitude .424  .381 .468 .087  

Diagonal random effects       

 Intention ~ Subjective Norm .144 -.013 .096 .191 .095 .019 

 Attitude ~~ Subjective Norm .359 -.002 .313 .405 .092 -.007 

 Behavior ~ Intention .459 .024 .415 .504 .089 -.010 

 Intention ~ Attitude .438 .014 .393 .483 .090 .003 

World Value Survey       

Full random effects       

Job Satisfaction ~ Job 

autonomy 

.463  .432 .494 .061  

Life Satisfaction ~ Job 

Satisfaction 

.347  .323 .372 .049  

Diagonal random effects       

Job Satisfaction ~ Job 

autonomy 

.460 -.003 .433 .487 .054 -.007 

Life Satisfaction ~ Job 

Satisfaction 

.386 .039 .365 .408 .043 -.006 

 

Note: Diff: The difference in estimate or confidence interval (CI) width between diagonal 

random effects results and full random effects results (diagonal – full). "DV ~ IV" denotes 

the path coefficient regressing DV on IV. "X ~~ Y" denotes the correlation between X and Y. 
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Figure 1. Examples of random effects (RE) path models. 

  

Attitude Intention Behavior 
.30 .47 
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Attitude Intention Behavior 
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a b 
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a b 
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2
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2
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2
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Random Effects 
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2
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Figure 2. How the model parameters depend on the three factors in the simulation study: 

Random direct path model 

  

X 
a b 

M Y 

c' 

μa=.10 

μb=.10 

μc'=.00 

μa=.30 

μb=.30 

μc'=.00 

Small Moderate 

Mean (μa, μb, μc') 

τa=.10 

τb=.10 

τc'=.10 

τa=.20 

τb=.20 

τc'=.20 

Small Large 

SD (τa, τb, τc') 

ρab = .00 

ρac' = .00 

ρbc' = .00 

ρab = .30 

ρac' = .30 

ρbc' = .30 

Nil Moderate 

Correlation 

(Covariance, τab, equal to τaτbρab) 

ρab = .50 

ρac' = .50 

ρbc' = .50 

ρab = .80 

ρac' = .80 

ρbc' = .80 

Large Very Large 
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Figure 3. Bias in estimating the path parameter means.  
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Figure 4. RMSE in estimating the path parameter means.  
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Figure 5. Coverage probabilities of the 95% confidence intervals for path parameter means. 
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Figure 6 Mean widths of the 95% confidence interval in estimating path parameters.  
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Figure 7. Power in testing the a path (X-M) and the b path (M-Y).  
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Appendix A 

For the model in Error! Reference source not found., the correlations implied by 

this model are: 

ρ𝑀𝑋 = 𝑎 

ρ𝑌𝑋 = 𝑐′ + 𝑎𝑏 

ρ𝑌𝑀 = 𝑏 + 𝑎𝑐′ 

We adopt the following convention in the present paper: 

Expectation: 𝐸(𝑢) = μ𝑢 

Standard deviation: 𝑆𝐷(𝑢) = τ𝑢 

Variance: 𝑉𝑎𝑟(𝑢) = τ𝑢
2  

Covariance: 𝐶𝑜𝑣(𝑢, 𝑣) = τ𝑢𝑣 

Let's assume random effects exist and a, b, and c' vary and covary with a 

multivariate normal distribution. The expectations of the three implied population 

correlations are derived as follow. 

𝐸(ρ𝑀𝑋) = 𝐸(𝑎) = μ𝑎  (A 1) 

𝐸(ρ𝑌𝑋) = 𝐸(𝑐′ + 𝑎𝑏) 

= μ𝑐′ + 𝐸(𝑎𝑏) 

= μ𝑐′ + μ𝑎μ𝑏 + τ𝑎𝑏 (A 2) 

𝐸(ρ𝑌𝑀) =  𝐸(𝑏 + 𝑎𝑐′) 

= μ𝑏 + 𝐸(𝑎𝑐′) 

= μ𝑏 + μ𝑎μ𝑐′ + τ𝑎𝑐′ (A 3) 

The variances of the implied population correlations ρ𝑀𝑋 and ρ𝑌𝑋 can be derived 

by the equations in Bohrnstedt and Goldberger (1969): 

𝑉𝑎𝑟(ρ𝑀𝑋) = 𝑉𝑎𝑟(𝑎) = τ𝑎
2  (A 4) 

𝑉𝑎𝑟(ρ𝑌𝑋) = 𝑉𝑎𝑟(𝑐′ + 𝑎𝑏) 



CORRELATION-BASED META-ANALYTIC STRUCTURAL 46 

= τ𝑐′
2 + 𝑉𝑎𝑟(𝑎𝑏) + 2𝐶𝑜𝑣(𝑐′, 𝑎𝑏) 

= τ𝑐′
2 + μ𝑎

2 τ𝑏
2 + μ𝑏

2 τ𝑎
2 + 2μ𝑎μ𝑏τ𝑎𝑏 + τ𝑎

2 τ𝑏
2 + (τ𝑎𝑏)2 + 2μ𝑎τ𝑏𝑐′ + 2μ𝑏τ𝑎𝑐′ 

= μ𝑏
2 τ𝑎

2 + μ𝑎
2 τ𝑏

2 + τ𝑐′
2 + τ𝑎

2 τ𝑏
2 + 2μ𝑎μ𝑏τ𝑎𝑏 + (τ𝑎𝑏)2 + 2μ𝑏τ𝑎𝑐′ + 2μ𝑎τ𝑏𝑐′ (A 5) 

The final equation is arranged such that the variances come before the covariances.  

The variance of the implied population correlation ρ𝑌𝑀 can be derived simply by 

changing the terms in the variance of ρ𝑌𝑋: 

𝑉𝑎𝑟(ρ𝑌𝑀) = 𝑉𝑎𝑟(𝑏 + 𝑎𝑐′) 

= μ𝑐
2τ𝑎

2 + μ𝑎
2 τ𝑐′

2 + τ𝑏
2 + τ𝑎

2 τ𝑐′
2 + 2μ𝑎μ𝑐′τ𝑎𝑐′ + (τ𝑎𝑐′ )

2 + 2μ𝑐
2τ𝑎𝑏 + 2μ𝑎τ𝑏𝑐′ (A 6) 

The covariance between ρ𝑀𝑋 and ρ𝑌𝑋 is 

𝐶𝑜𝑣(ρ𝑀𝑋, ρ𝑌𝑋) = 𝐶𝑜𝑣(𝑎, 𝑐′ + 𝑎𝑏) 

= τ𝑎𝑐′ + 𝐶𝑜𝑣(𝑎, 𝑎𝑏) 

= μ𝑏τ𝑎
2 + μ𝑎τ𝑎𝑏 + τ𝑎𝑐′ (A 7) 

The covariance between ρ𝑀𝑋 and ρ𝑌𝑀 can be derived simply by changing terms of 

the above equation: 

𝐶𝑜𝑣(ρ𝑀𝑋, ρ𝑌𝑀) = 𝐶𝑜𝑣(𝑎, 𝑏 + 𝑎𝑐′) 

= μ𝑐τ𝑎
2 + τ𝑎𝑏 + μ𝑎τ𝑎𝑐′ (A 8) 

Last, we derive the covariance between ρ𝑌𝑋 and ρ𝑌𝑀, the most complicated one: 

𝐶𝑜𝑣(ρ𝑌𝑋, ρ𝑌𝑀) = 𝐶𝑜𝑣(𝑐 + 𝑎𝑏, 𝑏 + 𝑎𝑐′) 

= τ𝑐′𝑏 + 𝐶𝑜𝑣(𝑐′, 𝑎𝑐′) + 𝐶𝑜𝑣(𝑎𝑏, 𝑏) + 𝐶𝑜𝑣(𝑎𝑏, 𝑎𝑐′) 

= τ𝑏𝑐′ + 𝐶𝑜𝑣(𝑎𝑐′, 𝑐′) + 𝐶𝑜𝑣(𝑎𝑏, 𝑏) + 𝐶𝑜𝑣(𝑎𝑏, 𝑎𝑐′) 

Note that, 

𝐶𝑜𝑣(𝑎𝑐′, 𝑐′) = μaτ𝑐′
2 + μcτ𝑎𝑐′ 

𝐶𝑜𝑣(𝑎𝑏, 𝑏) = μaτ𝑏
2 + μbτ𝑎𝑏 

Moreover,  

𝐶𝑜𝑣(𝑎𝑏, 𝑎𝑐′) = μ𝑎
2 τ𝑏𝑐′ + μ𝑎μ𝑐′τ𝑎𝑏 + μ𝑎μ𝑏τ𝑎𝑐′ + μ𝑏μ𝑐′τ𝑎

2 + τ𝑎
2 τ𝑏𝑐′ + τ𝑎𝑏τ𝑎𝑐′ 
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Substituting them into the equation,  

𝐶𝑜𝑣(ρ𝑌𝑋, ρ𝑌𝑀)

= τ𝑏𝑐′ + μ𝑎τ𝑐′
2 + μ𝑐′τ𝑎𝑐′ + μ𝑎τ𝑏

2 + μ𝑏τ𝑎𝑏 + τ𝑎
2 τ𝑏𝑐′ + μ𝑎μ𝑐′τ𝑎𝑏 + μ𝑎μ𝑏τ𝑎𝑐′

+ μ𝑏μ𝑐′τ𝑎
2 + τ𝑎

2 τ𝑏𝑐′ + τ𝑎𝑏τ𝑎𝑐′ 

= μ𝑏μ𝑐′τ𝑎
2 + μ𝑎τ𝑏

2 + μ𝑎τ𝑐′
2 + μ𝑏τ𝑎𝑏 + μ𝑎μ𝑐′τ𝑎𝑏 + μ𝑐′τ𝑎𝑐′ + μ𝑎μ𝑏τ𝑎𝑐′ + τ𝑏𝑐′

+ μ𝑎
2 τ𝑏𝑐′ + τ𝑎

2 τ𝑏𝑐′ + τ𝑎𝑏τ𝑎𝑐′ 

= μ𝑏μ𝑐′τ𝑎
2 + μ𝑎τ𝑏

2 + τ𝑎τ𝑐′
2 + (μ𝑏 + μ𝑎μ𝑐′)τ𝑎𝑏 + (μ𝑐′ + μ𝑎μ𝑏)τ𝑎𝑐′ 

+(1 + μ𝑎
2 + τ𝑎

2 )τ𝑏𝑐′ + τ𝑎𝑏τ𝑎𝑐′ (A 9) 

The expectations, variances, and covariances of the three implied population 

correlations are now available. We will then simplify the equations for two conditions. 

If all three model parameters are fixed, that is, τ𝑎
2  = τ𝑏

2 = τ𝑐′
2  = τab = τac' = τbc' = 0, 

then, 

𝐸(ρ𝑀𝑋) = μ𝑎 (A 10) 

𝐸(ρ𝑌𝑋) = μ𝑐′ + μ𝑎μ𝑏  (A 11) 

𝐸(ρ𝑌𝑀) = μ𝑏 + μ𝑎μ𝑐′ (A 12) 

𝑉(ρ𝑀𝑋) = 𝑉(ρ𝑌𝑋) = 𝑉(ρ𝑌𝑀) = 0 (A 13) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑋) = 𝐶(ρ𝑀𝑋, ρ𝑌𝑀) = 𝐶(ρ𝑌𝑋, ρ𝑌𝑀) = 0 (A 14) 

As expected, the implied population correlations are also fixed. 

If all three model parameters are random but uncorrelated, that is, τab = τac' = τbc' = 0, 

then 

𝐸(ρ𝑀𝑋) = μa (A 15) 

𝐸(ρ𝑌𝑋) = μ𝑐′ + μ𝑎μ𝑏  (A 16) 

𝐸(ρ𝑌𝑀) = μ𝑏 + μ𝑎μ𝑐′ (A 17) 

𝑉(ρ𝑀𝑋) = τ𝑎
2  (A 18) 

𝑉(ρ𝑌𝑋) = μ𝑏
2 τ𝑎

2 + μ𝑎
2 τ𝑏

2 + τ𝑐′
2 + τ𝑎

2 τ𝑏
2  (A 19) 
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𝑉(ρ𝑌𝑀) = μ𝑐′
2 τ𝑎

2 + μ𝑎
2 τ𝑐′

2 + τ𝑏
2 + τ𝑎

2 τ𝑐′
2  (A 20) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑋) = μ𝑏τ𝑎
2  (A 21) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑀) = μ𝑐′τ𝑎
2  (A 22) 

𝐶(ρ𝑌𝑋, ρ𝑌𝑀) = μ𝑏μ𝑐′τ𝑎
2 + μ𝑎τ𝑏

2 + μ𝑎τ𝑐′
2  (A 23) 

Despite the zero correlations among the model parameters, interestingly, the implied 

population correlations can have non-zero covariances. 

We then examined the two more conditions, direct effect (c') fixed to zero, and direct 

effect random with an expectation of zero. If μc' = 0 and τ𝑐′
2  = 0 (which implies τ𝑎𝑐′ = 

τ𝑏𝑐′= 0), then 

𝐸(ρ𝑀𝑋) = μ𝑎 (A 24) 

𝐸(ρ𝑌𝑋) = μ𝑎μ𝑏 + τ𝑎𝑏 (A 25) 

𝐸(ρ𝑌𝑀) = μ𝑏  (A 26) 

𝑉(ρ𝑀𝑋) = τ𝑎
2  (A 27) 

𝑉(ρ𝑌𝑋) = μ𝑏
2 τ𝑎

2 + μ𝑎
2 τ𝑏

2 + τ𝑎
2 τ𝑏

2 + 2μ𝑎μ𝑏τ𝑎𝑏 + (τ𝑎𝑏)2 (A 28) 

𝑉(ρ𝑌𝑀) = τ𝑏
2 (A 29) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑋) = μ𝑏τ𝑎
2 + μ𝑎τ𝑎𝑏  (A 30) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑀) = τ𝑎𝑏 (A 31) 

𝐶(ρ𝑌𝑋, ρ𝑌𝑀) = μ𝑎τ𝑏
2 + μ𝑏τ𝑎𝑏  (A 32) 

Again, despite the fixed direct path is fixed to zero, the three implied population 

correlations can still have non-zero covariances. 

If μc' = 0 but vary across populations, then 

𝐸(ρ𝑀𝑋) = μ𝑎  (A 33) 

𝐸(ρ𝑌𝑋) = μ𝑎μ𝑏 + τ𝑎𝑏 (A 34) 

𝐸(ρ𝑌𝑀) = μ𝑏 + τ𝑎𝑐′ (A 35) 

𝑉(ρ𝑀𝑋) = τ𝑎
2  (A 36) 
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𝑉(ρ𝑌𝑋) = μ𝑏
2τ𝑎

2 + μ𝑎
2 τ𝑏

2 + τ𝑐′
2 + τ𝑎

2 τ𝑏
2 + 2μ𝑎μ𝑏τ𝑎𝑏 + (τ𝑎𝑏)2 + 2μ𝑏τ𝑎𝑐′ + 2μ𝑎τ𝑏𝑐′ (A 37) 

𝑉(ρ𝑌𝑀) = μ𝑎
2 τ𝑐′

2 + τ𝑏
2 + τ𝑎

2 τ𝑐′
2 + (τ𝑎𝑐)2 + 2μ𝑎τ𝑏𝑐′ (A 38) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑋) = μ𝑏τ𝑎
2 + μ𝑎τ𝑎𝑏 + τ𝑎𝑐′ (A 39) 

𝐶(ρ𝑀𝑋, ρ𝑌𝑀) = τ𝑎𝑏 + μ𝑎τ𝑎𝑐′ (A 40) 

𝐶(ρ𝑌𝑋, ρ𝑌𝑀) = μ𝑎τ𝑏
2 + μ𝑎τ𝑐′

2 + μ𝑏τ𝑎𝑏 + μ𝑎μ𝑏τ𝑎𝑐′ + (1 + μ𝑎
2 + τ𝑎

2 )τ𝑏𝑐′ + τ𝑎𝑏τ𝑎𝑐′ (A 41) 

In addition to covariances among implied population correlations, note that the 

expectation of the correlation between M and Y is a function of both the mean of b path and 

the covariance between a path and c' path.  
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Appendix B 

The technical detail is outlined in the sample scripts (available at Open Science 

Framework: https://osf.io/5b8nw/). Using the script involves four steps. First, "source" the 

file that defines all the functions needed: 

source("MASEMExplore_functions.R") 

Second, specify the RE path model as in lavaan (Russeel, 2012), a popular R 

package for testing structural equation models. For example, for the simple mediation model: 

my_model <- " 

         m ~ a*x 

         y ~ b*m 

   " 

Third, the random effects model to be explored is specified by creating a named 

vector of the means and the variances-covariances of random effects. The present version of 

the function assumes that the random parameters have a multivariate normal distribution. For 

example, if the parameters, a and b, are assumed to have means .30 and .40 respectively, and 

vary with standard deviation .10 and uncorrelated,  

my_pmean <- c(a = .30, b = .40) 

my_pcov <- matrix(c(.10^2, .00, 

                          .00, .10^2), 2, 2, byrow = TRUE) 

dimnames(my_pcov) <- list(c(a, b), c(a, b)) 

In the covariance matrix, .10^2, or .102 = .01 is the variance of the random effects. 

Please refer to the sample script on the requirement on the names for the vector of means and 

the matrix of random effects. 

To explore the case of correlated parameters, one convenient way is to specify the 

covariances as SD1*SD2*Correlation. For example, if the two paths, with random effects .10 

and .15 (in SD) respectively, are assumed to have a correlation of .50, the covariance matrix 

is 

my_pcov <- matrix(c(.10^2, .10*.15*.50, 

                 .10*.15*.50, .15^2), 2, 2, byrow = TRUE) 

https://osf.io/5b8nw/
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This makes the covariance matrix easy to read because the elements are either 

standard deviation or correlation. 

Last, the function sim_par2cor() is used to generate a user-defined number of 

random parameters, and compute the implied population correlation matrix. For example,   

par2cor_simdata <- sim_par2cor( 

                        common_model = my_common_model, 

                        pmean = my_pmean, 

                        pcov = my_pcov, 

                        nrep = 5000) 

The three required arguments are the RE path model (common_model), the vector 

of means (pmean), and the random effects covariance matrix defined above (pcov). The 

number of random parameters is specified by nrep, 5,000 replications in this example. After 

the random parameters and the implied population correlation matrices are generated and 

stored in a variable (par2cor_simdata in this example), the generic functions 

summary() and plot() can be used to examine the distribution of the implied population 

correlations. The figures in the manuscript were generated by this function. A model can also 

be fitted to the mean of implied population correlation matrix, to see to how much the mean 

parameter and the parameter from the mean implied population correlation matrix may be 

different. 

 


