
Summary of an lm_list_lmhelprs-Class Object
      Source: R/summary_lm_list_helprs.R
      summary.lm_list_lmhelprs.RdThe summary of content
of the output of many_lm().
Arguments
- object
 The output of
many_lm().- ...
 Other arguments. Not used.
- x
 An object of class
summary_lm_list_lmhelprs.- digits
 The number of significant digits in printing numerical results.
Value
summary.lm_list_lmhelprs() returns a
summary_lm_list_lmhelprs-class object, which
is a list of the summary() outputs
of the lm() outputs stored.
print.summary_lm_list_lmhelprs() returns x
invisibly. Called for its side
effect.
Adapted from the package manymome
such that many_lm() can be used
without manymome.
Examples
data(data_test1)
mod <- "x3 ~ x2 + x1
        x4 ~ x3
        x5 ~ x4*x1"
out <- many_lm(mod, data_test1)
summary(out)
#> Call:
#> many_lm(models = mod, data = data_test1)
#> 
#> Model:
#> x3 ~ x2 + x1
#> <environment: 0x55978d07eb80>
#>             Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)  -0.0835     0.0968   -0.86  0.39067    
#> x2           -0.0494     0.0896   -0.55  0.58289    
#> x1            0.3801     0.0955    3.98  0.00013 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.143. Adjusted R-square = 0.125. F(2, 97) = 8.079, p < .001
#> 
#> Model:
#> x4 ~ x3
#> <environment: 0x55978d07eb80>
#>             Estimate Std. Error t value Pr(>|t|)  
#> (Intercept)  -0.1144     0.0866   -1.32    0.190  
#> x3            0.2156     0.0846    2.55    0.012 *
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.062. Adjusted R-square = 0.053. F(1, 98) = 6.489, p = 0.012
#> 
#> Model:
#> x5 ~ x4 * x1
#> <environment: 0x55978d07eb80>
#>             Estimate Std. Error t value Pr(>|t|)   
#> (Intercept) -0.10644    0.10399   -1.02   0.3086   
#> x4           0.15124    0.11589    1.31   0.1950   
#> x1           0.27872    0.09885    2.82   0.0058 **
#> x4:x1        0.00945    0.12017    0.08   0.9375   
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> R-square = 0.108. Adjusted R-square = 0.080. F(3, 96) = 3.878, p = 0.012