Print the content of a 'hierarchical_lm`-class object.
Arguments
- x
A
hierarchical_lm
-class object, usually the output ofhierarchical_lm()
.- digits
The minimum number of significant digits to be used for most numbers. To be used by the print method of
anova
-class objects.- signif.stars
Logical. To be used by the print method of
anova
-class objects.- eps.Pvalue
To be passed to
format.pval()
. It controls how small p-values are displayed. Default is.001
. That is, p-values less than.001
will be displayed as<.001
.- ...
Optional arguments. To be passed to the print method of
anova
-class objects.
Details
The printout is very similar
to that of the print method of
an anova
object. It simply
overrides the default values for
some arguments, notably esp.Pvalue
to prevent small p-values to be
presented in scientific notation.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
dat <- data_test1
lm1 <- lm(y ~ x1 + x2, dat)
lm2 <- lm(y ~ x1 + x2 + x3 + x4, dat)
lm3 <- lm(y ~ x1 + cat1 + cat2 + x2 + x3 + x4, dat)
lm4 <- lm(y ~ x1 + x2*x3 + x4, dat)
hierarchical_lm(lm1, lm3, lm2)
#> Analysis of Variance Table
#>
#> Model 1: y ~ x1 + x2
#> Model 2: y ~ x1 + x2 + x3 + x4
#> Model 3: y ~ x1 + cat1 + cat2 + x2 + x3 + x4
#> adj.R.sq R.sq R.sq.change Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 0.5090 0.5189 0.00000 97 55.83
#> 2 0.7269 0.7380 0.21906 95 30.41 2 25.419 39.717 <0.001 ***
#> 3 0.7270 0.7518 0.01385 90 28.80 5 1.607 1.004 0.42
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
hierarchical_lm(lm1, lm2, lm4)
#> Analysis of Variance Table
#>
#> Model 1: y ~ x1 + x2
#> Model 2: y ~ x1 + x2 + x3 + x4
#> Model 3: y ~ x1 + x2 * x3 + x4
#> adj.R.sq R.sq R.sq.change Res.Df RSS Df Sum of Sq F Pr(>F)
#> 1 0.5090 0.5189 0.0000 97 55.83
#> 2 0.7269 0.7380 0.2191 95 30.41 2 25.419 39.320 <0.001 ***
#> 3 0.7242 0.7382 0.0002 94 30.38 1 0.024 0.073 0.787
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1