Skip to contents

The summary method for lm_betaselect-class objects.

Usage

# S3 method for class 'lm_betaselect'
summary(
  object,
  correlation = FALSE,
  symbolic.cor = FALSE,
  se_method = c("boot", "bootstrap", "t", "lm", "ls"),
  ci = TRUE,
  level = 0.95,
  boot_type = c("perc", "bc"),
  boot_pvalue_type = c("asymmetric", "norm"),
  type = c("beta", "standardized", "raw", "unstandardized"),
  print_raw = c("none", "before_ci", "after_ci"),
  ...
)

# S3 method for class 'summary.lm_betaselect'
print(
  x,
  est_digits = 3,
  symbolic.cor = x$symbolic.cor,
  signif.stars = getOption("show.signif.stars"),
  tz_digits = 3,
  pvalue_less_than = 0.001,
  ...
)

Arguments

object

The output of lm_betaselect().

correlation

If TRUE, the correlation matrix of the estimates will be returned. The same argument in stats::summary.lm(). Default is FALSE.

symbolic.cor

If TRUE, correlations are printed in symbolic form as in stats::summary.lm(). Default is FALSE.

se_method

The method used to compute the standard errors and confidence intervals (if requested). If bootstrapping was requested when calling lm_betaselect() and this argument is set to "bootstrap" or "boot", the bootstrap standard errors are returned. If bootstrapping was not requested or if this argument is set to "t", "lm", or "ls", then the usual lm standard errors are returned. Default is "boot".

ci

Logical. Whether confidence intervals are computed. Default is TRUE.

level

The level of confidence, default is .95, returning the 95% confidence interval.

boot_type

The type of bootstrap confidence intervals, if requested. Currently, it supports "perc", percentile bootstrap confidence intervals, and "bc", bias-corrected bootstrap confidence interval.

boot_pvalue_type

The type of p-values if se_method is "boot" or "bootstrap". If "norm", then the z score is used to compute the p-value using a standard normal distribution. If "asymmetric", the default, then the method presented in Asparouhov and Muthén (2021) is used to compute the p-value based on the bootstrap distribution.

type

String. If "unstandardized" or "raw", the output before standardization are used If "beta" or "standardized", then the output after selected variables standardized are returned. Default is "beta".

print_raw

Control whether the estimates before selected standardization are printed when type is "beta" or "standardized". If "none", the default, then it will not be printed. If set to "before_ci" and ci is TRUE, then will be inserted to the left of the confidence intervals. If set to "after_ci"andciisTRUE, then will be printed to the right of the confidence intervals. If ciisFALSE`, then will be printed to the right of the standardized estimates.

...

Additional arguments passed to other methods.

x

The output of summary.lm_betaselect().

est_digits

The number of digits after the decimal to be displayed for the coefficient estimates, their standard errors, and confidence intervals (if present). Note that the values will be rounded to this number of digits before printing. If all digits at this position are zero for all values, the values may be displayed with fewer digits. Note that the coefficient table is printed by stats::printCoefmat(). If some numbers are vary large, the number of digits after the decimal may be smaller than est_digits due to a limit on the column width. This value also determines the number of digits for displayed R-squared.

signif.stars

Whether "stars" (asterisks) are printed to denote the level of significance achieved for each coefficient. Default is TRUE.

tz_digits

The number of digits after the decimal to be displayed for the t or similar statistic (in the column "t value" or "z value"). This value also determines the number of digits for the F statistic for the R-squared.

pvalue_less_than

If a p-value is less than this value, it will be displayed with "<(this value)". For example, if pvalue_less_than is .001, the default, p-values less than .001 will be displayed as <.001. This value also determines the printout of the p-value of the F statistic. (This argument does what eps.Pvalue does in stats::printCoefmat().)

Value

It returns an object of class summary.lm_betaselect, which is similar to the output of stats::summary.lm(), with additional information on the standardization and bootstrapping, if requested.

The print-method of summary.lm_betaselect is called for its side effect. The object x is returned invisibly.

Details

By default, it returns a summary.lm_betaselect-class object for the results with selected variables standardized. By setting type to "raw" or "unstandardized", it return the summary for the results before standardization.

The print method of summary.lm_betaselect-class objects is adapted from stdmod::print.summary.std_selected().

References

Asparouhov, A., & Muthén, B. (2021). Bootstrap p-value computation. Retrieved from https://www.statmodel.com/download/FAQ-Bootstrap%20-%20Pvalue.pdf

See also

Examples


data(data_test_mod_cat)

# bootstrap should be set to 2000 or 5000 in real studies
lm_beta_x <- lm_betaselect(dv ~ iv*mod + cov1 + cat1,
                           data = data_test_mod_cat,
                           to_standardize = "iv",
                           do_boot = TRUE,
                           bootstrap = 100,
                           iseed = 1234)

summary(lm_beta_x)
#> Call to lm_betaselect():
#> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, 
#>     data = data_test_mod_cat, to_standardize = "iv", do_boot = TRUE, 
#>     bootstrap = 100, iseed = 1234)
#> 
#> Variable(s) standardized: iv 
#> 
#> Call:
#> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat, 
#>     to_standardize = "iv"))
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1987.03  -463.99     0.25   455.14  2152.48 
#> 
#> Coefficients:
#>              Estimate  CI.Lower  CI.Upper Std. Error z value Pr(Boot)    
#> (Intercept)   790.550  -430.112  1905.572    584.405   1.353     0.20    
#> iv            -94.302 -1569.880   981.851    625.286  -0.151     0.80    
#> mod            57.578    45.592    70.397      6.031   9.547   <0.001 ***
#> cov1           10.024    -5.933    35.460      9.457   1.060     0.18    
#> cat1gp2      -112.588  -263.297    32.218     74.809  -1.505     0.10    
#> cat1gp3       -53.106  -209.176    88.391     73.524  -0.722     0.56    
#> iv:mod          8.661    -1.968    22.601      6.203   1.396     0.14    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 681.1 on 493 degrees of freedom
#> 
#> R-squared                : 0.602
#> Adjusted R-squared       : 0.597
#> ANOVA test of R-squared : F(6, 493) = 124.344, p < 0.001
#> 
#> Note:
#> - Results *after* standardization are reported.
#> - Nonparametric bootstrapping conducted.
#> - The number of bootstrap samples is 100.
#> - Standard errors are bootstrap standard errors.
#> - Z values are computed by 'Estimate / Std. Error'.
#> - The bootstrap p-values are asymmetric p-values by Asparouhov and
#>   Muthén (2021).
#> - Percentile bootstrap 95.0% confidence interval reported.
summary(lm_beta_x, ci = TRUE)
#> Call to lm_betaselect():
#> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, 
#>     data = data_test_mod_cat, to_standardize = "iv", do_boot = TRUE, 
#>     bootstrap = 100, iseed = 1234)
#> 
#> Variable(s) standardized: iv 
#> 
#> Call:
#> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat, 
#>     to_standardize = "iv"))
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1987.03  -463.99     0.25   455.14  2152.48 
#> 
#> Coefficients:
#>              Estimate  CI.Lower  CI.Upper Std. Error z value Pr(Boot)    
#> (Intercept)   790.550  -430.112  1905.572    584.405   1.353     0.20    
#> iv            -94.302 -1569.880   981.851    625.286  -0.151     0.80    
#> mod            57.578    45.592    70.397      6.031   9.547   <0.001 ***
#> cov1           10.024    -5.933    35.460      9.457   1.060     0.18    
#> cat1gp2      -112.588  -263.297    32.218     74.809  -1.505     0.10    
#> cat1gp3       -53.106  -209.176    88.391     73.524  -0.722     0.56    
#> iv:mod          8.661    -1.968    22.601      6.203   1.396     0.14    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 681.1 on 493 degrees of freedom
#> 
#> R-squared                : 0.602
#> Adjusted R-squared       : 0.597
#> ANOVA test of R-squared : F(6, 493) = 124.344, p < 0.001
#> 
#> Note:
#> - Results *after* standardization are reported.
#> - Nonparametric bootstrapping conducted.
#> - The number of bootstrap samples is 100.
#> - Standard errors are bootstrap standard errors.
#> - Z values are computed by 'Estimate / Std. Error'.
#> - The bootstrap p-values are asymmetric p-values by Asparouhov and
#>   Muthén (2021).
#> - Percentile bootstrap 95.0% confidence interval reported.
summary(lm_beta_x, boot_pvalue_type = "norm")
#> Call to lm_betaselect():
#> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, 
#>     data = data_test_mod_cat, to_standardize = "iv", do_boot = TRUE, 
#>     bootstrap = 100, iseed = 1234)
#> 
#> Variable(s) standardized: iv 
#> 
#> Call:
#> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = betaselectr::std_data(data = data_test_mod_cat, 
#>     to_standardize = "iv"))
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1987.03  -463.99     0.25   455.14  2152.48 
#> 
#> Coefficients:
#>              Estimate  CI.Lower  CI.Upper Std. Error z value Pr(>|z|)    
#> (Intercept)   790.550  -430.112  1905.572    584.405   1.353    0.176    
#> iv            -94.302 -1569.880   981.851    625.286  -0.151    0.880    
#> mod            57.578    45.592    70.397      6.031   9.547   <0.001 ***
#> cov1           10.024    -5.933    35.460      9.457   1.060    0.289    
#> cat1gp2      -112.588  -263.297    32.218     74.809  -1.505    0.132    
#> cat1gp3       -53.106  -209.176    88.391     73.524  -0.722    0.470    
#> iv:mod          8.661    -1.968    22.601      6.203   1.396    0.163    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 681.1 on 493 degrees of freedom
#> 
#> R-squared                : 0.602
#> Adjusted R-squared       : 0.597
#> ANOVA test of R-squared : F(6, 493) = 124.344, p < 0.001
#> 
#> Note:
#> - Results *after* standardization are reported.
#> - Nonparametric bootstrapping conducted.
#> - The number of bootstrap samples is 100.
#> - Standard errors are bootstrap standard errors.
#> - Z values are computed by 'Estimate / Std. Error'.
#> - The bootstrap p-values are based on standard normal distribution
#>   using z values.
#> - Percentile bootstrap 95.0% confidence interval reported.
summary(lm_beta_x, type = "raw")
#> Call to lm_betaselect():
#> betaselectr::lm_betaselect(formula = dv ~ iv * mod + cov1 + cat1, 
#>     data = data_test_mod_cat, to_standardize = "iv", do_boot = TRUE, 
#>     bootstrap = 100, iseed = 1234)
#> 
#> Variable(s) standardized: iv 
#> 
#> Call:
#> stats::lm(formula = dv ~ iv * mod + cov1 + cat1, data = data_test_mod_cat)
#> 
#> Residuals:
#>      Min       1Q   Median       3Q      Max 
#> -1987.03  -463.99     0.25   455.14  2152.48 
#> 
#> Coefficients:
#>              Estimate  CI.Lower  CI.Upper Std. Error z value Pr(Boot)    
#> (Intercept)  1488.568 -6589.967 12784.458    584.405   2.547     0.20    
#> iv            -46.545  -819.064   480.699    625.286  -0.074     0.80    
#> mod            -6.530  -117.793    72.268      6.031  -1.083   <0.001 ***
#> cov1           10.024    -5.933    35.460      9.457   1.060     0.18    
#> cat1gp2      -112.588  -263.297    32.218     74.809  -1.505     0.10    
#> cat1gp3       -53.106  -209.176    88.391     73.524  -0.722     0.56    
#> iv:mod          4.275    -0.963    11.792      6.203   0.689     0.14    
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
#> Residual standard error: 681.1 on 493 degrees of freedom
#> 
#> R-squared                : 0.602
#> Adjusted R-squared       : 0.597
#> ANOVA test of R-squared : F(6, 493) = 124.344, p < 0.001
#> 
#> Note:
#> - Results *before* standardization are reported.
#> - Nonparametric bootstrapping conducted.
#> - The number of bootstrap samples is 100.
#> - Standard errors are bootstrap standard errors.
#> - Z values are computed by 'Estimate / Std. Error'.
#> - The bootstrap p-values are asymmetric p-values by Asparouhov and
#>   Muthén (2021).
#> - Percentile bootstrap 95.0% confidence interval reported.