ANOVA Tables For 'lm_betaselect' and 'glm_betaselect' Objects
Source:R/lm_betaselect_methods.R
anova.lm_betaselect.Rd
Return the analysis
of variance tables for
the outputs of
lm_betaselect()
and
glm_betaselect()
.
Arguments
- object
The output of
lm_betaselect()
orglm_betaselect()
.- ...
Additional outputs of
lm_betaselect()
orglm_betaselect()
.- type
String. If
"unstandardized"
or"raw"
, the output before standardization are used If"beta"
or"standardized"
, then the output after selected variables standardized are returned. Default is"beta"
.- dispersion
To be passed to
stats::anova.glm()
. The dispersion parameter. Default iaNULL
and it is extracted from the model.- test
String. The test to be conducted. Please refer to
stats::anova.glm()
for details.
Value
It returns an object of class
anova
, which is identical to
the output of stats::anova()
in
structure.
Details
By default, it calls stats::anova()
on the results with selected variables
standardized. By setting type
to
"raw"
or "unstandardized"
, it
calls stats::anova()
on the results
before standardization.
Author
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448
Examples
data(data_test_mod_cat)
lm_beta_x <- lm_betaselect(dv ~ iv*mod + cov1 + cat1,
data = data_test_mod_cat,
to_standardize = "iv",
do_boot = FALSE)
anova(lm_beta_x)
#> Analysis of Variance Table
#>
#> Response: dv
#> Df Sum Sq Mean Sq F value Pr(>F)
#> iv 1 302739738 302739738 652.6310 <2e-16 ***
#> mod 1 40936174 40936174 88.2481 <2e-16 ***
#> cov1 1 341505 341505 0.7362 0.3913
#> cat1 2 1118110 559055 1.2052 0.3005
#> iv:mod 1 946107 946107 2.0396 0.1539
#> Residuals 493 228690783 463876
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(lm_beta_x, type = "raw")
#> Analysis of Variance Table
#>
#> Response: dv
#> Df Sum Sq Mean Sq F value Pr(>F)
#> iv 1 302739738 302739738 652.6310 <2e-16 ***
#> mod 1 40936174 40936174 88.2481 <2e-16 ***
#> cov1 1 341505 341505 0.7362 0.3913
#> cat1 2 1118110 559055 1.2052 0.3005
#> iv:mod 1 946107 946107 2.0396 0.1539
#> Residuals 493 228690783 463876
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
data_test_mod_cat$p <- scale(data_test_mod_cat$dv)[, 1]
data_test_mod_cat$p <- ifelse(data_test_mod_cat$p > 0,
yes = 1,
no = 0)
logistic_beta_x <- glm_betaselect(p ~ iv*mod + cov1 + cat1,
data = data_test_mod_cat,
family = binomial,
to_standardize = "iv")
anova(logistic_beta_x)
#> Analysis of Deviance Table
#>
#> Model: binomial, link: logit
#>
#> Response: p
#>
#> Terms added sequentially (first to last)
#>
#>
#> Df Deviance Resid. Df Resid. Dev Pr(>Chi)
#> NULL 499 692.86
#> iv 1 206.034 498 486.83 < 2.2e-16 ***
#> mod 1 45.127 497 441.70 1.847e-11 ***
#> cov1 1 0.034 496 441.66 0.8531
#> cat1 2 0.675 494 440.99 0.7136
#> iv:mod 1 0.886 493 440.10 0.3465
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(logistic_beta_x, type = "raw")
#> Analysis of Deviance Table
#>
#> Model: binomial, link: logit
#>
#> Response: p
#>
#> Terms added sequentially (first to last)
#>
#>
#> Df Deviance Resid. Df Resid. Dev Pr(>Chi)
#> NULL 499 692.86
#> iv 1 206.034 498 486.83 < 2.2e-16 ***
#> mod 1 45.127 497 441.70 1.847e-11 ***
#> cov1 1 0.034 496 441.66 0.8531
#> cat1 2 0.675 494 440.99 0.7136
#> iv:mod 1 0.886 493 440.10 0.3465
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1